Inclusion relations between modulation and Triebel-Lizorkin spaces
HTML articles powered by AMS MathViewer
- by Weichao Guo, Huoxiong Wu and Guoping Zhao
- Proc. Amer. Math. Soc. 145 (2017), 4807-4820
- DOI: https://doi.org/10.1090/proc/13614
- Published electronically: May 30, 2017
- PDF | Request permission
Abstract:
In this paper, we obtain the sharp conditions of the inclusion relations between modulation spaces $M_{p,q}^s$ and Triebel-Lizorkin spaces $F_{p,r}$ for $p\leq 1$, which greatly improve and extend the results for the embedding relations between local Hardy spaces and modulation spaces obtained by Kobayashi, Miyachi and Tomita in [Studia Math. 192 (2009), 79-96].References
- Árpád Bényi, Karlheinz Gröchenig, Kasso A. Okoudjou, and Luke G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), no. 2, 366–384. MR 2321047, DOI 10.1016/j.jfa.2006.12.019
- H. G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983. Published in: Proc. Internat. Conf. on Wavelet and Applications, 99-140. New Delhi Allied Publishers, India, 2003.
- Hans G. Feichtinger, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), no. 2, 109–140. MR 2233968, DOI 10.1007/BF03549447
- H. G. Feichtinger, Banach convolution algebras of Wiener type, Functions, series, operators, Vol. I, II (Budapest, 1980) Colloq. Math. Soc. János Bolyai, vol. 35, North-Holland, Amsterdam, 1983, pp. 509–524. MR 751019
- P. Gröbner, Banachrä ume Glatter Funktionen and Zerlegungsmethoden, Doctoral Thesis, University of Vienna, 1992.
- Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717, DOI 10.1007/978-1-4612-0003-1
- David Marc Goldberg, A LOCAL VERSION OF REAL HARDY SPACES, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–Princeton University. MR 2627942
- Weichao Guo and Jiecheng Chen, Stability of nonlinear Schrödinger equations on modulation spaces, Front. Math. China 9 (2014), no. 2, 275–301. MR 3171501, DOI 10.1007/s11464-014-0346-x
- W. Guo, J. Chen, D. Fan, G. Zhao, Characterization of some properties on weighted modulation spaces, arXiv:1602.02871 (2016).
- WeiChao Guo, DaShan Fan, HuoXiong Wu, and GuoPing Zhao, Sharpness of some properties of weighted modulation spaces, Sci. China Math. 59 (2016), no. 1, 169–190. MR 3437002, DOI 10.1007/s11425-015-5067-4
- Jinsheng Han and Baoxiang Wang, $\alpha$-modulation spaces (I) scaling, embedding and algebraic properties, J. Math. Soc. Japan 66 (2014), no. 4, 1315–1373. MR 3272601, DOI 10.2969/jmsj/06641315
- Masaharu Kobayashi, Akihiko Miyachi, and Naohito Tomita, Embedding relations between local Hardy and modulation spaces, Studia Math. 192 (2009), no. 1, 79–96. MR 2491791, DOI 10.4064/sm192-1-7
- Masaharu Kobayashi and Mitsuru Sugimoto, The inclusion relation between Sobolev and modulation spaces, J. Funct. Anal. 260 (2011), no. 11, 3189–3208. MR 2776566, DOI 10.1016/j.jfa.2011.02.015
- Akihiko Miyachi, Fabio Nicola, Silvia Rivetti, Anita Tabacco, and Naohito Tomita, Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3869–3883. MR 2529896, DOI 10.1090/S0002-9939-09-09968-7
- Kasso A. Okoudjou, Embedding of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1639–1647. MR 2051124, DOI 10.1090/S0002-9939-04-07401-5
- Michael Ruzhansky, Mitsuru Sugimoto, and Baoxiang Wang, Modulation spaces and nonlinear evolution equations, Evolution equations of hyperbolic and Schrödinger type, Progr. Math., vol. 301, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 267–283. MR 3014810, DOI 10.1007/978-3-0348-0454-7_{1}4
- Michael Ruzhansky, Mitsuru Sugimoto, Joachim Toft, and Naohito Tomita, Changes of variables in modulation and Wiener amalgam spaces, Math. Nachr. 284 (2011), no. 16, 2078–2092. MR 2844679, DOI 10.1002/mana.200910199
- Mitsuru Sugimoto and Naohito Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal. 248 (2007), no. 1, 79–106. MR 2329683, DOI 10.1016/j.jfa.2007.03.015
- Joachim Toft and Patrik Wahlberg, Embeddings of $\alpha$-modulation spaces, Pliska Stud. Math. Bulgar. 21 (2012), 25–46. MR 3114337
- Joachim Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal. 207 (2004), no. 2, 399–429. MR 2032995, DOI 10.1016/j.jfa.2003.10.003
- H. Triebel, Modulation spaces on the Euclidean $n$-space, Z. Anal. Anwendungen 2 (1983), no. 5, 443–457 (English, with German and Russian summaries). MR 725159, DOI 10.4171/ZAA/79
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1
- Hans Triebel, Theory of function spaces. II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992. MR 1163193, DOI 10.1007/978-3-0346-0419-2
- Wang Baoxiang, Zhao Lifeng, and Guo Boling, Isometric decomposition operators, function spaces $E^\lambda _{p,q}$ and applications to nonlinear evolution equations, J. Funct. Anal. 233 (2006), no. 1, 1–39. MR 2204673, DOI 10.1016/j.jfa.2005.06.018
- Baoxiang Wang and Chunyan Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations 239 (2007), no. 1, 213–250. MR 2341554, DOI 10.1016/j.jde.2007.04.009
- Baoxiang Wang, Zhaohui Huo, Chengchun Hao, and Zihua Guo, Harmonic analysis method for nonlinear evolution equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2848761, DOI 10.1142/9789814360746
- Baoxiang Wang and Henryk Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations 232 (2007), no. 1, 36–73. MR 2281189, DOI 10.1016/j.jde.2006.09.004
- Guoping Zhao, Jiecheng Chen, Dashan Fan, and Weichao Guo, Sharp estimates of unimodular multipliers on frequency decomposition spaces, Nonlinear Anal. 142 (2016), 26–47. MR 3508056, DOI 10.1016/j.na.2016.04.003
Bibliographic Information
- Weichao Guo
- Affiliation: School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, People’s Republic of China
- MR Author ID: 1023531
- Email: weichaoguomath@gmail.com
- Huoxiong Wu
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen, 361005, People’s Republic of China
- MR Author ID: 357899
- Email: huoxwu@xmu.edu.cn
- Guoping Zhao
- Affiliation: School of Applied Mathematics, Xiamen University of Technology, Xiamen, 361024, People’s Republic of China
- MR Author ID: 1066314
- Email: guopingzhaomath@gmail.com
- Received by editor(s): July 30, 2016
- Received by editor(s) in revised form: December 8, 2016
- Published electronically: May 30, 2017
- Additional Notes: This work was partly supported by the NNSF of China (Grant Nos. 11371295, 11471041, 11601456) and the NSF of Fujian Province of China (No. 2015J01025).
- Communicated by: Svitlana Mayboroda
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4807-4820
- MSC (2010): Primary 46E35, 42B35
- DOI: https://doi.org/10.1090/proc/13614
- MathSciNet review: 3691997