## Maximizers for the singular Trudinger-Moser inequalities in the subcritical cases

HTML articles powered by AMS MathViewer

- by Nguyen Lam PDF
- Proc. Amer. Math. Soc.
**145**(2017), 4885-4892 Request permission

## Abstract:

The main purpose of this note is to study the existence of extremal functions for the singular Trudinger-Moser inequalities in the subcritical cases. More precisely, let $N\geq 2$,$~0<\beta <N,~0<a,~b$ and denote \begin{align*} TM_{a,b,\beta }\left ( \alpha \right ) & =\sup _{\left \Vert \nabla u\right \Vert _{N}^{a}+\left \Vert u\right \Vert _{N}^{b}\leq 1}\int _{ \mathbb {R}^{N}}\phi _{N}\left ( \alpha \left ( 1-\frac {\beta }{N}\right ) \left \vert u\right \vert ^{\frac {N}{N-1}}\right ) \frac {dx}{\left \vert x\right \vert ^{\beta }},\\ \phi _{N}(t) & =e^{t}- {\displaystyle \sum \limits _{j=0}^{N-2}} \frac {t^{j}}{j!}. \end{align*} Then we will prove in this article that $TM_{a,b,\beta }\left ( \alpha \right )$ can be attained if ($\alpha <\alpha _{N}=N\omega _{N-1}^{\frac {1}{N-1}}$) or ($\alpha =\alpha _{N};$ $b<N$).## References

- Shinji Adachi and Kazunaga Tanaka,
*Trudinger type inequalities in $\mathbf R^N$ and their best exponents*, Proc. Amer. Math. Soc.**128**(2000), no. 7, 2051–2057. MR**1646323**, DOI 10.1090/S0002-9939-99-05180-1 - Adimurthi and Yunyan Yang,
*An interpolation of Hardy inequality and Trundinger-Moser inequality in $\Bbb R^N$ and its applications*, Int. Math. Res. Not. IMRN**13**(2010), 2394–2426. MR**2669653**, DOI 10.1093/imrn/rnp194 - L. Caffarelli, R. Kohn, and L. Nirenberg,
*First order interpolation inequalities with weights*, Compositio Math.**53**(1984), no. 3, 259–275. MR**768824** - D. M. Cao,
*Nontrivial solution of semilinear elliptic equation with critical exponent in $\textbf {R}^2$*, Comm. Partial Differential Equations**17**(1992), no. 3-4, 407–435. MR**1163431**, DOI 10.1080/03605309208820848 - D. Cassani, F. Sani, and C. Tarsi,
*Equivalent Moser type inequalities in $\Bbb {R}^2$ and the zero mass case*, J. Funct. Anal.**267**(2014), no. 11, 4236–4263. MR**3269875**, DOI 10.1016/j.jfa.2014.09.022 - João Marcos B. do Ó,
*$N$-Laplacian equations in $\mathbf R^N$ with critical growth*, Abstr. Appl. Anal.**2**(1997), no. 3-4, 301–315. MR**1704875**, DOI 10.1155/S1085337597000419 - J. M. do Ó, F. Sani, and C. Tarsi,
*Vanishing-concentration-compactness alternative for the Trudinger–Moser inequality in*$\mathbb {R}^{N}$, Commun. Contemp. Math. (2016) DOI: 10.1142/S021919971650036X - Mengxia Dong and Guozhen Lu,
*Best constants and existence of maximizers for weighted Trudinger-Moser inequalities*, Calc. Var. Partial Differential Equations**55**(2016), no. 4, Art. 88, 26. MR**3519595**, DOI 10.1007/s00526-016-1014-7 - Michinori Ishiwata,
*Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in $\Bbb R^N$*, Math. Ann.**351**(2011), no. 4, 781–804. MR**2854113**, DOI 10.1007/s00208-010-0618-z - Michinori Ishiwata, Makoto Nakamura, and Hidemitsu Wadade,
*On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**31**(2014), no. 2, 297–314. MR**3181671**, DOI 10.1016/j.anihpc.2013.03.004 - N. Lam, G. Lu, and L. Zhang,
*Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities*, Rev. Mat. Iberoam, to appear. arXiv:1504.04858 - Yuxiang Li and Bernhard Ruf,
*A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^n$*, Indiana Univ. Math. J.**57**(2008), no. 1, 451–480. MR**2400264**, DOI 10.1512/iumj.2008.57.3137 - Bernhard Ruf,
*A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$*, J. Funct. Anal.**219**(2005), no. 2, 340–367. MR**2109256**, DOI 10.1016/j.jfa.2004.06.013

## Additional Information

**Nguyen Lam**- Affiliation: Department of Mathematics, University of British Columbia and The Pacific Institute for the Mathematical Sciences, Vancouver, BC V6T1Z4, Canada
- MR Author ID: 796424
- ORCID: 0000-0002-8392-6284
- Email: nlam@math.ubc.ca
- Received by editor(s): August 25, 2016
- Received by editor(s) in revised form: December 17, 2016
- Published electronically: June 9, 2017
- Additional Notes: The research of this work was partially supported by the PIMS-Math Distinguished Post-doctoral Fellowship from the Pacific Institute for the Mathematical Sciences.
- Communicated by: Svitlana Mayboroda
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 4885-4892 - MSC (2010): Primary 35A23; Secondary 26D15, 46E35
- DOI: https://doi.org/10.1090/proc/13624
- MathSciNet review: 3692003