Localization for uniform algebras generated by real-analytic functions
HTML articles powered by AMS MathViewer
- by John T. Anderson and Alexander J. Izzo
- Proc. Amer. Math. Soc. 145 (2017), 4919-4930
- DOI: https://doi.org/10.1090/proc/13640
- Published electronically: June 22, 2017
- PDF | Request permission
Abstract:
It is shown that if $A$ is a uniform algebra generated by real-analytic functions on a suitable compact subset $K$ of a real-analytic variety such that the maximal ideal space of $A$ is $K$ and every continuous function on $K$ is locally a uniform limit of functions in $A$, then $A=C(K)$. This gives an affirmative answer to a special case of a question from the Proceedings of the Symposium on Function Algebras held at Tulane University in 1965.References
- H. Alexander, Polynomial approximation and analytic structure, Duke Math. J. 38 (1971), 123β135. MR 283244, DOI 10.1215/S0012-7094-71-03816-6
- John T. Anderson and Alexander J. Izzo, A peak point theorem for uniform algebras generated by smooth functions on two-manifolds, Bull. London Math. Soc. 33 (2001), no.Β 2, 187β195. MR 1815422, DOI 10.1112/blms/33.2.187
- John T. Anderson, Alexander J. Izzo, and John Wermer, Polynomial approximation on three-dimensional real-analytic submanifolds of $\textbf {C}^n$, Proc. Amer. Math. Soc. 129 (2001), no.Β 8, 2395β2402. MR 1823924, DOI 10.1090/S0002-9939-01-05911-1
- John T. Anderson, Alexander J. Izzo, and John Wermer, Polynomial approximation on real-analytic varieties in $\mathbf C^n$, Proc. Amer. Math. Soc. 132 (2004), no.Β 5, 1495β1500. MR 2053357, DOI 10.1090/S0002-9939-03-07263-0
- John T. Anderson and Alexander J. Izzo, Peak point theorems for uniform algebras on smooth manifolds, Math. Z. 261 (2009), no.Β 1, 65β71. MR 2452637, DOI 10.1007/s00209-008-0313-x
- John T. Anderson and Alexander J. Izzo, A peak point theorem for uniform algebras on real-analytic varieties, Math. Ann. 364 (2016), no.Β 1-2, 657β665. MR 3451401, DOI 10.1007/s00208-015-1224-x
- Frank T. Birtel (ed.), Function algebras, Scott, Foresman & Co., Chicago, Ill., 1966. MR 0193471
- Brian James Cole, ONE-POINT PARTS AND THE PEAK POINT CONJECTURE, ProQuest LLC, Ann Arbor, MI, 1968. Thesis (Ph.D.)βYale University. MR 2617861
- Michael Freeman, Some conditions for uniform approximation on a manifold, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp.Β 42β60. MR 0193538
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Alexander J. Izzo, Localization for uniform algebras generated by smooth functions on two-manifolds, Bull. Lond. Math. Soc. 42 (2010), no.Β 4, 652β660. MR 2669686, DOI 10.1112/blms/bdq024
- Alexander J. Izzo, Uniform approximation on manifolds, Ann. of Math. (2) 174 (2011), no.Β 1, 55β73. MR 2811594, DOI 10.4007/annals.2011.174.1.2
- Alexander J. Izzo, The peak point conjecture and uniform algebras invariant under group actions, Function spaces in modern analysis, Contemp. Math., vol. 547, Amer. Math. Soc., Providence, RI, 2011, pp.Β 135β146. MR 2856487, DOI 10.1090/conm/547/10814
- Alexander J. Izzo, Nonlocal uniform algebras on three-manifolds, Pacific J. Math. 259 (2012), no.Β 1, 109β116. MR 2988485, DOI 10.2140/pjm.2012.259.109
- Eva Kallin, A nonlocal function algebra, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 821β824. MR 152907, DOI 10.1073/pnas.49.6.821
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337, DOI 10.1007/BFb0077071
- John Rainwater, A remark on regular Banach algebras, Proc. Amer. Math. Soc. 18 (1967), 255β256. MR 0208413, DOI 10.1090/S0002-9939-1967-0208413-9
- Edgar Lee Stout, Holomorphic approximation on compact, holomorphically convex, real-analytic varieties, Proc. Amer. Math. Soc. 134 (2006), no.Β 8, 2302β2308. MR 2213703, DOI 10.1090/S0002-9939-06-08250-5
- J. Wermer, Approximation on a disk, Math. Ann. 155 (1964), 331β333. MR 165386, DOI 10.1007/BF01354865
- J. Wermer, Polynomially convex disks, Math. Ann. 158 (1965), 6β10. MR 174968, DOI 10.1007/BF01370392
- Donald R. Wilken, Approximate normality and function algebras on the interval and the circle, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp.Β 98β111. MR 0196525
Bibliographic Information
- John T. Anderson
- Affiliation: Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, Massachusetts 01610
- MR Author ID: 251416
- Email: janderso@holycross.edu
- Alexander J. Izzo
- Affiliation: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403
- MR Author ID: 307587
- Email: aizzo@bgsu.edu
- Received by editor(s): May 30, 2016
- Received by editor(s) in revised form: December 24, 2016
- Published electronically: June 22, 2017
- Communicated by: Franc Forstneric
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4919-4930
- MSC (2010): Primary 46J10, 46J15; Secondary 32A38, 32A65
- DOI: https://doi.org/10.1090/proc/13640
- MathSciNet review: 3692006