## Weighted Rellich type inequalities related to Baouendi-Grushin operators

HTML articles powered by AMS MathViewer

- by Ismail Kombe and Abdullah Yener PDF
- Proc. Amer. Math. Soc.
**145**(2017), 4845-4857 Request permission

## Abstract:

We find a simple sufficient criterion on a pair of nonnegative weight functions $a\left ( x,y\right )$ and $b\left ( x,y\right )$ in $\mathbb {R} ^{m+k}$ so that the general weighted $L^{p}$ Rellich type inequality \begin{equation*} \int _{\mathbb {\mathbb {R}}^{m+k}}a\left ( x,y\right ) \left \vert \Delta _{\gamma }u\left ( x,y\right ) \right \vert ^{p}dxdy\geq \int _{\mathbb {\mathbb {R}}^{m+k}}b\left ( x,y\right ) \left \vert u\left ( x,y\right ) \right \vert ^{p}dxdy \end{equation*} holds for all $u\in C_{0}^{\infty }(\mathbb {R}^{m+k})$. Here $\Delta _{\gamma }=\Delta _{x}+|x|^{2\gamma }\Delta _{y}$ is the Baouendi-Grushin operator, $\gamma >0,$ $m,k\geq 1$ and $p>1$. It is important to point out here that our approach is constructive in the sense that it allows us to retrieve already established weighted sharp Rellich type inequalities as well as to get other new results with an explicit constant on $\mathbb {\mathbb {R}}^{m+k}.$ We also obtain a sharp $L^{p}$ Rellich type inequality that connects first to second order derivatives and several new two-weight Rellich type inequalities with remainder terms on smooth bounded domains $\Omega$ in $\mathbb {\mathbb {R}}^{m+k}$ via a nonlinear differential inequality.## References

- Mohamed Salah Baouendi,
*Sur une classe d’opérateurs elliptiques dégénérés*, Bull. Soc. Math. France**95**(1967), 45–87 (French). MR**228819** - G. Barbatis,
*Improved Rellich inequalities for the polyharmonic operator*, Indiana Univ. Math. J.**55**(2006), no. 4, 1401–1422. MR**2269418**, DOI 10.1512/iumj.2006.55.2752 - G. Barbatis,
*Best constants for higher-order Rellich inequalities in $L^p(\Omega )$*, Math. Z.**255**(2007), no. 4, 877–896. MR**2274540**, DOI 10.1007/s00209-006-0056-5 - Thomas Bieske,
*Viscosity solutions on Grushin-type planes*, Illinois J. Math.**46**(2002), no. 3, 893–911. MR**1951247** - Paolo Caldiroli and Roberta Musina,
*Rellich inequalities with weights*, Calc. Var. Partial Differential Equations**45**(2012), no. 1-2, 147–164. MR**2957654**, DOI 10.1007/s00526-011-0454-3 - E. B. Davies and A. M. Hinz,
*Explicit constants for Rellich inequalities in $L_p(\Omega )$*, Math. Z.**227**(1998), no. 3, 511–523. MR**1612685**, DOI 10.1007/PL00004389 - Nicola Garofalo,
*Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension*, J. Differential Equations**104**(1993), no. 1, 117–146. MR**1224123**, DOI 10.1006/jdeq.1993.1065 - Nassif Ghoussoub and Amir Moradifam,
*Bessel pairs and optimal Hardy and Hardy-Rellich inequalities*, Math. Ann.**349**(2011), no. 1, 1–57. MR**2753796**, DOI 10.1007/s00208-010-0510-x - V. V. Grušin,
*A certain class of hypoelliptic operators*, Mat. Sb. (N.S.)**83 (125)**(1970), 456–473 (Russian). MR**0279436** - V. V. Grušin,
*A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold*, Mat. Sb. (N.S.)**84 (126)**(1971), 163–195 (Russian). MR**0283630** - Shou-feng Shen and Yong-yang Jin,
*Rellich type inequalities related to Grushin type operator and Greiner type operator*, Appl. Math. J. Chinese Univ. Ser. B**27**(2012), no. 3, 353–362. MR**2967336**, DOI 10.1007/s11766-012-2908-6 - Ismail Kombe,
*Hardy and Rellich-type inequalities with remainders for Baouendi-Grushin vector fields*, Houston J. Math.**41**(2015), no. 3, 849–874. MR**3423688** - I. Kombe and A. Yener,
*General Hardy type inequalities related to Baouendi-Grushin operators,*to appear in Complex Variables and Elliptic Equations. - Peter Lindqvist,
*On the equation $\textrm {div}\,(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$*, Proc. Amer. Math. Soc.**109**(1990), no. 1, 157–164. MR**1007505**, DOI 10.1090/S0002-9939-1990-1007505-7 - Amir Moradifam,
*Optimal weighted Hardy-Rellich inequalities on $H^2\cap H^1_0$*, J. Lond. Math. Soc. (2)**85**(2012), no. 1, 22–40. MR**2876309**, DOI 10.1112/jlms/jdr045 - Giorgio Metafune, Motohiro Sobajima, and Chiara Spina,
*Weighted Calderón-Zygmund and Rellich inequalities in $L^p$*, Math. Ann.**361**(2015), no. 1-2, 313–366. MR**3302622**, DOI 10.1007/s00208-014-1075-x - Pengcheng Niu, Huiqing Zhang, and Yong Wang,
*Hardy type and Rellich type inequalities on the Heisenberg group*, Proc. Amer. Math. Soc.**129**(2001), no. 12, 3623–3630. MR**1860496**, DOI 10.1090/S0002-9939-01-06011-7 - Franz Rellich,
*Halbbeschränkte Differentialoperatoren höherer Ordnung*, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 243–250 (German). MR**0088624** - A. Tertikas and N. B. Zographopoulos,
*Best constants in the Hardy-Rellich inequalities and related improvements*, Adv. Math.**209**(2007), no. 2, 407–459. MR**2296305**, DOI 10.1016/j.aim.2006.05.011

## Additional Information

**Ismail Kombe**- Affiliation: Department of Electrical and Electronics Engineering, Istanbul Commerce University, Kucukyali E5 Kavsagi, Inonu Cad. No: 4, Kucukyali 34840, Istanbul, Turkey.
- MR Author ID: 720054
- Email: ikombe@ticaret.edu.tr
**Abdullah Yener**- Affiliation: Department of Economics, Istanbul Commerce University, Sütlüce Mahallesi, İmrahor Caddesi, No: 90, Beyog̃lu 34445, İstanbul, Turkey
- Email: ayener@ticaret.edu.tr
- Received by editor(s): July 4, 2016
- Received by editor(s) in revised form: July 5, 2016, and December 12, 2016
- Published electronically: July 10, 2017
- Communicated by: Jeremy Tyson
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 4845-4857 - MSC (2010): Primary 26D10, 35H10; Secondary 46E35
- DOI: https://doi.org/10.1090/proc/13730
- MathSciNet review: 3692000