Squarefree smooth numbers and Euclidean prime generators
HTML articles powered by AMS MathViewer
- by Andrew R. Booker and Carl Pomerance
- Proc. Amer. Math. Soc. 145 (2017), 5035-5042
- DOI: https://doi.org/10.1090/proc/13576
- Published electronically: August 31, 2017
- PDF | Request permission
Abstract:
We show that for each prime $p>7$, every residue mod $p$ can be represented by a squarefree number with largest prime factor at most $p$. We give two applications to recursive prime generators akin to the one Euclid used to prove the infinitude of primes.References
- Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206. MR 683806, DOI 10.2307/2006975
- N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65–72. MR 45159, DOI 10.2307/1969420
- Andrew R. Booker, On Mullin’s second sequence of primes, Integers 12 (2012), no. 6, 1167–1177. MR 3011555, DOI 10.1515/integers-2012-0034
- Andrew R. Booker, A variant of the Euclid-Mullin sequence containing every prime, J. Integer Seq. 19 (2016), no. 6, Article 16.6.4, 6. MR 3546618
- Richard Crandall and Carl Pomerance, Prime numbers, 2nd ed., Springer, New York, 2005. A computational perspective. MR 2156291
- J. Feitsma, Pseudoprimes, http://www.janfeitsma.nl/math/psp2/index.
- D. A. Frolenkov and K. Soundararajan, A generalization of the Pólya-Vinogradov inequality, Ramanujan J. 31 (2013), no. 3, 271–279. MR 3081668, DOI 10.1007/s11139-012-9462-y
- Glyn Harman, Integers without large prime factors in short intervals and arithmetic progressions, Acta Arith. 91 (1999), no. 3, 279–289. MR 1735677, DOI 10.4064/aa-91-3-279-289
- Christopher Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225 (1967), 209–220. MR 207630, DOI 10.1515/crll.1967.225.209
- Youness Lamzouri, Xiannan Li, and Kannan Soundararajan, Conditional bounds for the least quadratic non-residue and related problems, Math. Comp. 84 (2015), no. 295, 2391–2412. MR 3356031, DOI 10.1090/S0025-5718-2015-02925-1
- H. W. Lenstra Jr., Galois theory and primality testing, Orders and their applications (Oberwolfach, 1984) Lecture Notes in Math., vol. 1142, Springer, Berlin, 1985, pp. 169–189. MR 812498, DOI 10.1007/BFb0074800
- Vsevolod F. Lev, Optimal representations by sumsets and subset sums, J. Number Theory 62 (1997), no. 1, 127–143. MR 1430006, DOI 10.1006/jnth.1997.2012
- Mariana Levin, Carl Pomerance, and K. Soundararajan, Fixed points for discrete logarithms, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 6–15. MR 2969346, DOI 10.1007/978-3-642-14518-6_{5}
- A. A. Mullin, Recursive function theory, Bull. Amer. Math. Soc. 69 (1963), 737.
- Paul Pollack and Enrique Treviño, The primes that Euclid forgot, Amer. Math. Monthly 121 (2014), no. 5, 433–437. MR 3193727, DOI 10.4169/amer.math.monthly.121.05.433
- Carl Pomerance, Remarks on the Pólya-Vinogradov inequality, Integers 11 (2011), no. 4, 531–542. MR 2988079, DOI 10.1515/integ.2011.039
- Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proc. Amer. Math. Soc. 15 (1964), 515–516. MR 163893, DOI 10.1090/S0002-9939-1964-0163893-X
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Samuel S. Wagstaff Jr., Computing Euclid’s primes, Bull. Inst. Combin. Appl. 8 (1993), 23–32. MR 1217356
- T. D. Wooley, A superpowered Euclidean prime generator, 2016, arXiv:1607.05267, preprint.
Bibliographic Information
- Andrew R. Booker
- Affiliation: School of Mathematics, Bristol University, University Walk, Bristol, BS8 1TW, United Kingdom
- MR Author ID: 672596
- Email: andrew.booker@bristol.ac.uk
- Carl Pomerance
- Affiliation: Mathematics Department, Dartmouth College, Hanover, New Hampshire 03755
- MR Author ID: 140915
- Email: carl.pomerance@dartmouth.edu
- Received by editor(s): July 6, 2016
- Received by editor(s) in revised form: July 7, 2016, and November 4, 2016
- Published electronically: August 31, 2017
- Communicated by: Matthew A. Papanikolas
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 5035-5042
- MSC (2010): Primary 11A41; Secondary 11A15, 11B25, 11L40
- DOI: https://doi.org/10.1090/proc/13576
- MathSciNet review: 3717934