An intrinsic parallel transport in Wasserstein space
HTML articles powered by AMS MathViewer
- by John Lott
- Proc. Amer. Math. Soc. 145 (2017), 5329-5340
- DOI: https://doi.org/10.1090/proc/13655
- Published electronically: July 10, 2017
- PDF | Request permission
Abstract:
If $M$ is a smooth compact connected Riemannian manifold, let $P(M)$ denote the Wasserstein space of probability measures on $M$. We describe a geometric construction of parallel transport of some tangent cones along geodesics in $P(M)$. We show that when everything is smooth, the geometric parallel transport agrees with earlier formal calculations.References
- Luigi Ambrosio and Nicola Gigli, Construction of the parallel transport in the Wasserstein space, Methods Appl. Anal. 15 (2008), no. 1, 1–29. MR 2482206, DOI 10.4310/MAA.2008.v15.n1.a3
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- Nicola Gigli, On the inverse implication of Brenier-McCann theorems and the structure of $(\scr P_2(M),W_2)$, Methods Appl. Anal. 18 (2011), no. 2, 127–158. MR 2847481, DOI 10.4310/MAA.2011.v18.n2.a1
- Nicola Gigli, Second order analysis on $(\scr P_2(M),W_2)$, Mem. Amer. Math. Soc. 216 (2012), no. 1018, xii+154. MR 2920736, DOI 10.1090/S0065-9266-2011-00619-2
- Nicolas Juillet, On displacement interpolation of measures involved in Brenier’s theorem, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3623–3632. MR 2813392, DOI 10.1090/S0002-9939-2011-10891-8
- John Lott, Some geometric calculations on Wasserstein space, Comm. Math. Phys. 277 (2008), no. 2, 423–437. MR 2358290, DOI 10.1007/s00220-007-0367-3
- John Lott, On tangent cones in Wasserstein space, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3127–3136. MR 3637959, DOI 10.1090/proc/13415
- John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR 2480619, DOI 10.4007/annals.2009.169.903
- Shin-ichi Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math. 131 (2009), no. 2, 475–516. MR 2503990, DOI 10.1353/ajm.0.0048
- Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174. MR 1842429, DOI 10.1081/PDE-100002243
- A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998), no. 1, 123–148. MR 1601854, DOI 10.1007/s000390050050
- Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131. MR 2237206, DOI 10.1007/s11511-006-0002-8
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
Bibliographic Information
- John Lott
- Affiliation: Department of Mathematics, University of California - Berkeley, Berkeley, California 94720-3840
- MR Author ID: 116090
- ORCID: 0000-0002-5107-8719
- Email: lott@berkeley.edu
- Received by editor(s): August 9, 2016
- Received by editor(s) in revised form: January 6, 2017
- Published electronically: July 10, 2017
- Additional Notes: This research was partially supported by NSF grant DMS-1207654 and a Simons Fellowship
- Communicated by: Guofang Wei
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 5329-5340
- MSC (2010): Primary 51K10, 58J99
- DOI: https://doi.org/10.1090/proc/13655
- MathSciNet review: 3717960