Multi-point Seshadri constants on ruled surfaces
HTML articles powered by AMS MathViewer
- by Krishna Hanumanthu and Alapan Mukhopadhyay
- Proc. Amer. Math. Soc. 145 (2017), 5145-5155
- DOI: https://doi.org/10.1090/proc/13670
- Published electronically: June 22, 2017
- PDF | Request permission
Abstract:
Let $X$ be a surface and let $L$ be an ample line bundle on $X$. We first obtain a lower bound for the Seshadri constant $\varepsilon (X,L,r)$, when $r \ge 2$. We then assume that $X$ is a ruled surface and study Seshadri constants on $X$ in greater detail. We also make precise computations of Seshadri constants on $X$ in some cases.References
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- F. Bastianelli, Remarks on the nef cone on symmetric products of curves, Manuscripta Math. 130 (2009), no. 1, 113–120. MR 2533770, DOI 10.1007/s00229-009-0274-3
- Thomas Bauer, Seshadri constants on algebraic surfaces, Math. Ann. 313 (1999), no. 3, 547–583. MR 1678549, DOI 10.1007/s002080050272
- Thomas Bauer, Sandra Di Rocco, Brian Harbourne, MichałKapustka, Andreas Knutsen, Wioletta Syzdek, and Tomasz Szemberg, A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry, Contemp. Math., vol. 496, Amer. Math. Soc., Providence, RI, 2009, pp. 33–70. MR 2555949, DOI 10.1090/conm/496/09718
- Thomas Bauer and Tomasz Szemberg, Seshadri constants on surfaces of general type, Manuscripta Math. 126 (2008), no. 2, 167–175. MR 2403184, DOI 10.1007/s00229-008-0170-2
- Arnaud Beauville, Complex algebraic surfaces, 2nd ed., London Mathematical Society Student Texts, vol. 34, Cambridge University Press, Cambridge, 1996. Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid. MR 1406314, DOI 10.1017/CBO9780511623936
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI 10.1007/BFb0094512
- Lawrence Ein and Robert Lazarsfeld, Seshadri constants on smooth surfaces, Astérisque 218 (1993), 177–186. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265313
- Łucja Farnik, A note on Seshadri constants of line bundles on hyperelliptic surfaces, Arch. Math. (Basel) 107 (2016), no. 3, 227–237. MR 3538518, DOI 10.1007/s00013-016-0938-7
- Łucja Farnik, Tomasz Szemberg, Justyna Szpond and Halszka Tutaj-Gasińska, Restrictions on Seshadri constants on surfaces, arXiv:1602.08984v1, to appear in Taiwanese J. Math.
- Luis Fuentes García, Seshadri constants on ruled surfaces: the rational and the elliptic cases, Manuscripta Math. 119 (2006), no. 4, 483–505. MR 2223629, DOI 10.1007/s00229-006-0629-y
- Krishna Hanumanthu, Positivity of line bundles on general blow ups of $\Bbb {P}^2$, J. Algebra 461 (2016), 65–86. MR 3513065, DOI 10.1016/j.jalgebra.2016.04.029
- Krishna Hanumanthu, Seshadri constants on surfaces with Picard number 1, arXiv:1608.04476, to appear in Manuscripta Math.
- Brian Harbourne, Seshadri constants and very ample divisors on algebraic surfaces, J. Reine Angew. Math. 559 (2003), 115–122. MR 1989646, DOI 10.1515/crll.2003.044
- Brian Harbourne and Joaquim Roé, Discrete behavior of Seshadri constants on surfaces, J. Pure Appl. Algebra 212 (2008), no. 3, 616–627. MR 2365336, DOI 10.1016/j.jpaa.2007.06.018
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Andreas Leopold Knutsen, Wioletta Syzdek, and Tomasz Szemberg, Moving curves and Seshadri constants, Math. Res. Lett. 16 (2009), no. 4, 711–719. MR 2525035, DOI 10.4310/MRL.2009.v16.n4.a12
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Keiji Oguiso, Seshadri constants in a family of surfaces, Math. Ann. 323 (2002), no. 4, 625–631. MR 1921551, DOI 10.1007/s002080200317
- Syzdek, Wioletta, Seshadri constants and geometry of surfaces, Ph.D. thesis, 2005, University of Duisburg-Essen.
- Wioletta Syzdek and Tomasz Szemberg, Seshadri fibrations of algebraic surfaces, Math. Nachr. 283 (2010), no. 6, 902–908. MR 2668430, DOI 10.1002/mana.200610121
- Szemberg Tomasz Global and local positivity of line bundles, Habilitation 2001.
- Tomasz Szemberg, Bounds on Seshadri constants on surfaces with Picard number 1, Comm. Algebra 40 (2012), no. 7, 2477–2484. MR 2948840, DOI 10.1080/00927872.2011.579589
- Tomasz Szemberg, An effective and sharp lower bound on Seshadri constants on surfaces with Picard number 1, J. Algebra 319 (2008), no. 8, 3112–3119. MR 2408308, DOI 10.1016/j.jalgebra.2007.10.036
- Geng Xu, Curves in $\textbf {P}^2$ and symplectic packings, Math. Ann. 299 (1994), no. 4, 609–613. MR 1286887, DOI 10.1007/BF01459801
Bibliographic Information
- Krishna Hanumanthu
- Affiliation: Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam 603103, India
- MR Author ID: 859328
- Email: krishna@cmi.ac.in
- Alapan Mukhopadhyay
- Affiliation: Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam 603103, India
- Email: alapan@cmi.ac.in
- Received by editor(s): October 28, 2016
- Received by editor(s) in revised form: January 10, 2017
- Published electronically: June 22, 2017
- Additional Notes: The authors were partially supported by a grant from Infosys Foundation
- Communicated by: Lev Borisov
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 5145-5155
- MSC (2010): Primary 14C20; Secondary 14H50
- DOI: https://doi.org/10.1090/proc/13670
- MathSciNet review: 3717944