A non-associative Baker-Campbell-Hausdorff formula
HTML articles powered by AMS MathViewer
- by J. Mostovoy, J. M. Pérez-Izquierdo and I. P. Shestakov
- Proc. Amer. Math. Soc. 145 (2017), 5109-5122
- DOI: https://doi.org/10.1090/proc/13684
- Published electronically: June 16, 2017
- PDF | Request permission
Abstract:
We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing $\log (\exp (x)\exp (y))$, where $x$ and $y$ are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a recursive expression for the Magnus expansion of the Baker-Campbell-Hausdorff series and an explicit formula in degrees smaller than 5. Our main tool is a non-associative version of the Dynkin-Specht-Wever Lemma. A construction of Bernouilli numbers in terms of binary trees is also recovered.References
- S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2009), no. 5-6, 151–238. MR 2494199, DOI 10.1016/j.physrep.2008.11.001
- Andrea Bonfiglioli and Roberta Fulci, Topics in noncommutative algebra, Lecture Notes in Mathematics, vol. 2034, Springer, Heidelberg, 2012. The theorem of Campbell, Baker, Hausdorff and Dynkin. MR 2883818, DOI 10.1007/978-3-642-22597-0
- Frédéric Chapoton and Frédéric Patras, Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula, Internat. J. Algebra Comput. 23 (2013), no. 4, 853–861. MR 3078060, DOI 10.1142/S0218196713400134
- Vesselin Drensky and Lothar Gerritzen, Nonassociative exponential and logarithm, J. Algebra 272 (2004), no. 1, 311–320. MR 2029036, DOI 10.1016/j.jalgebra.2003.09.037
- E. B. Dynkin, Calculation of the coefficients in the Campbell-Hausdorff formula, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 323–326 (Russian). MR 0021940
- Petr Fuchs, Bernoulli numbers and binary trees, Tatra Mt. Math. Publ. 20 (2000), 111–117. Number theory (Liptovský Ján, 1999). MR 1845451
- L. Gerritzen, Planar rooted trees and non-associative exponential series, Adv. in Appl. Math. 33 (2004), no. 2, 342–365. MR 2074402, DOI 10.1016/j.aam.2003.06.003
- Lothar Gerritzen and Ralf Holtkamp, Hopf co-addition for free magma algebras and the non-associative Hausdorff series, J. Algebra 265 (2003), no. 1, 264–284. MR 1984911, DOI 10.1016/S0021-8693(03)00157-1
- J. Mostovoy and J. M. Pérez-Izquierdo, Formal multiplications, bialgebras of distributions and nonassociative Lie theory, Transform. Groups 15 (2010), no. 3, 625–653. MR 2718940, DOI 10.1007/s00031-010-9106-5
- J. Mostovoy, J. M. Perez-Izquierdo, and I. P. Shestakov, Hopf algebras in non-associative Lie theory, Bull. Math. Sci. 4 (2014), no. 1, 129–173. MR 3174282, DOI 10.1007/s13373-013-0049-8
- J. Mostovoy, J. M. Pérez-Izquierdo, and I. P. Shestakov, Nilpotent Sabinin algebras, J. Algebra 419 (2014), 95–123. MR 3253281, DOI 10.1016/j.jalgebra.2014.07.015
- L. V. Sabinin and P. O. Mikheev, Infinitesimal theory of local analytic loops, Dokl. Akad. Nauk SSSR 297 (1987), no. 4, 801–804 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 3, 545–548. MR 924255
- Ivan P. Shestakov and Ualbai U. Umirbaev, Free Akivis algebras, primitive elements, and hyperalgebras, J. Algebra 250 (2002), no. 2, 533–548. MR 1899864, DOI 10.1006/jabr.2001.9123
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- David Wigner, An identity in the free Lie algebra, Proc. Amer. Math. Soc. 106 (1989), no. 3, 639–640. MR 969322, DOI 10.1090/S0002-9939-1989-0969322-5
- Gregor Weingart, On the axioms for Sabinin algebras, Adv. Geom. 16 (2016), no. 2, 205–229. MR 3489597, DOI 10.1515/advgeom-2016-0003
- S. C. Woon, A tree for generating Bernoulli numbers, Math. Mag. 70 (1997), no. 1, 51–56. MR 1439167, DOI 10.2307/2691054
Bibliographic Information
- J. Mostovoy
- Affiliation: Departamento de Matemáticas, CINVESTAV-IPN, Apartado Postal 14–740, 07000 México D.F., Mexico
- MR Author ID: 628517
- Email: jacob@math.cinvestav.mx
- J. M. Pérez-Izquierdo
- Affiliation: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004, Logroño, Spain
- Email: jm.perez@unirioja.es
- I. P. Shestakov
- Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo, SP 05311-970, Brazil
- MR Author ID: 289548
- Email: shestak@ime.usp.br
- Received by editor(s): May 11, 2016
- Received by editor(s) in revised form: January 9, 2017
- Published electronically: June 16, 2017
- Additional Notes: The authors acknowledge the support by the Spanish Ministerio de Ciencia e Innovación (MTM2013-45588-C3-3-P) and Brazilian Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/DGPU)
The first author was also supported by the CONACYT grant 168093-F
The third author also acknowledges support by FAPESP, processo 2014/09310-5 and CNPq, processos 303916/2014-1 and 456698/2014-0. - Communicated by: Kailash Misra
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 5109-5122
- MSC (2010): Primary 17A50, 20N05
- DOI: https://doi.org/10.1090/proc/13684
- MathSciNet review: 3717941