## A note on the index of closed minimal hypersurfaces of flat tori

HTML articles powered by AMS MathViewer

- by Lucas Ambrozio, Alessandro Carlotto and Ben Sharp PDF
- Proc. Amer. Math. Soc.
**146**(2018), 335-344 Request permission

## Abstract:

Generalizing earlier work by Ros in ambient dimension three, we prove an affine lower bound for the Morse index of closed minimal hypersurfaces inside a flat torus in terms of their first Betti number (with purely dimensional coefficients).## References

- L. Ambrozio, A. Carlotto, and B. Sharp,
*Comparing the Morse index and the first Betti number of minimal hypersurfaces*, J. Differential Geom. (*to appear*). - M. do Carmo and M. Dajczer,
*Rotation hypersurfaces in spaces of constant curvature*, Trans. Amer. Math. Soc.**277**(1983), no. 2, 685–709. MR**694383**, DOI 10.1090/S0002-9947-1983-0694383-X - J. Choe and A. Fraser,
*Mean curvature in manifolds with Ricci curvature bounded from below*, preprint (arXiv: 1605.06602). - J. Choe and J. Hoppe,
*Higher dimensional Schwarz’s surfaces and Scherk’s surfaces*, preprint (arXiv: 1607.07153). - D. A. Hoffman,
*Some basic facts, old and new, about triply periodic embedded minimal surfaces*, J. Physique**51**(1990), no. 23, Suppl. Colloq. C7, 197–208 (English, with French summary). International Workshop on Geometry and Interfaces (Aussois, 1990). MR**1090149** - Edmund F. Kelly,
*Cohomology of compact minimal submanifolds*, Michigan Math. J.**19**(1972), 133–135. MR**317241** - C. Li,
*Index and topology of minimal hypersurfaces in $\mathbb {R}^n$*, preprint (arXiv:1605.09693). - F. Marques,
*Minimal surfaces - variational theory and applications*, Proceedings of the International Congress of Mathematicians, Seoul 2014. - William H. Meeks III,
*The theory of triply periodic minimal surfaces*, Indiana Univ. Math. J.**39**(1990), no. 3, 877–936. MR**1078743**, DOI 10.1512/iumj.1990.39.39043 - Tadashi Nagano and Brian Smyth,
*Minimal varieties and harmonic maps in tori*, Comment. Math. Helv.**50**(1975), 249–265. MR**390974**, DOI 10.1007/BF02565749 - A. Neves,
*New applications of Min-max Theory*, Proceedings of the International Congress of Mathematicians, Seoul 2014. - Antonio Ros,
*One-sided complete stable minimal surfaces*, J. Differential Geom.**74**(2006), no. 1, 69–92. MR**2260928** - Marty Ross,
*Schwarz’ $P$ and $D$ surfaces are stable*, Differential Geom. Appl.**2**(1992), no. 2, 179–195. MR**1245555**, DOI 10.1016/0926-2245(92)90032-I

## Additional Information

**Lucas Ambrozio**- Affiliation: Department of Mathematics, Imperial College, South Kensington Campus, London SW7 2AZ, United Kingdom
- Email: l.ambrozio@imperial.ac.uk
**Alessandro Carlotto**- Affiliation: ETH - Department of Mathematics, Rämistrasse 101, 8092 Zürich,Switzerland
- MR Author ID: 925162
- Email: alessandro.carlotto@math.ethz.ch
**Ben Sharp**- Affiliation: Department of Mathematics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- MR Author ID: 1008414
- Email: b.sharp@warwick.ac.uk
- Received by editor(s): January 24, 2017
- Published electronically: August 1, 2017
- Communicated by: Lei Ni
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 335-344 - MSC (2010): Primary 53A10; Secondary 53C42, 49Q05
- DOI: https://doi.org/10.1090/proc/13833
- MathSciNet review: 3723144