## A condition for purely absolutely continuous spectrum for CMV operators using the density of states

HTML articles powered by AMS MathViewer

- by Jake Fillman and Darren C. Ong PDF
- Proc. Amer. Math. Soc.
**146**(2018), 571-580 Request permission

## Abstract:

We prove an averaging formula for the derivative of the absolutely continuous part of the density of states measure for an ergodic family of CMV matrices. As a consequence, we show that the spectral type of such a family is almost surely purely absolutely continuous if and only if the density of states is absolutely continuous and the Lyapunov exponent vanishes almost everywhere with respect to the same. Both of these results are CMV operator analogues of theorems obtained by Kotani for Schrödinger operators.## References

- W. O. Amrein and V. Georgescu,
*On the characterization of bound states and scattering states in quantum mechanics*, Helv. Phys. Acta**46**(1973/74), 635–658. MR**363267** - Joachim Asch, Olivier Bourget, and Alain Joye,
*Spectral stability of unitary network models*, Rev. Math. Phys.**27**(2015), no. 7, 1530004, 22. MR**3396615**, DOI 10.1142/S0129055X15300046 - J. Bourgain, F. A. Grünbaum, L. Velázquez, and J. Wilkening,
*Quantum recurrence of a subspace and operator-valued Schur functions*, Comm. Math. Phys.**329**(2014), no. 3, 1031–1067. MR**3212879**, DOI 10.1007/s00220-014-1929-9 - María-José Cantero, F. Alberto Grünbaum, Leandro Moral, and Luis Velázquez,
*Matrix-valued Szegő polynomials and quantum random walks*, Comm. Pure Appl. Math.**63**(2010), no. 4, 464–507. MR**2604869** - M. J. Cantero, F. A. Grünbaum, L. Moral, and L. Velázquez,
*One-dimensional quantum walks with one defect*, Rev. Math. Phys.**24**(2012), no. 2, 1250002, 52. MR**2902157**, DOI 10.1142/S0129055X1250002X - M. J. Cantero, L. Moral, and L. Velázquez,
*Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle*, Linear Algebra Appl.**362**(2003), 29–56. MR**1955452**, DOI 10.1016/S0024-3795(02)00457-3 - C. Cedzich, F. A. Grünbaum, L. Velázquez, A. H. Werner, and R. F. Werner,
*A quantum dynamical approach to matrix Khrushchev’s formulas*, Comm. Pure Appl. Math.**69**(2016), no. 5, 909–957. MR**3481284**, DOI 10.1002/cpa.21579 - David Damanik,
*Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications*, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 539–563. MR**2307747**, DOI 10.1090/pspum/076.2/2307747 - David Damanik, Jon Erickson, Jake Fillman, Gerhardt Hinkle, and Alan Vu,
*Quantum intermittency for sparse CMV matrices with an application to quantum walks on the half-line*, J. Approx. Theory**208**(2016), 59–84. MR**3506927**, DOI 10.1016/j.jat.2016.04.001 - David Damanik, Jake Fillman, Milivoje Lukic, and William Yessen,
*Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model*, Int. Math. Res. Not. IMRN**16**(2015), 7110–7129. MR**3428956**, DOI 10.1093/imrn/rnu158 - David Damanik, Jake Fillman, and Darren C. Ong,
*Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices*, J. Math. Pures Appl. (9)**105**(2016), no. 3, 293–341 (English, with English and French summaries). MR**3465806**, DOI 10.1016/j.matpur.2015.11.002 - David Damanik, Jake Fillman, and Robert Vance,
*Dynamics of unitary operators*, J. Fractal Geom.**1**(2014), no. 4, 391–425. MR**3299818**, DOI 10.4171/JFG/12 - David Damanik, Paul Munger, and William N. Yessen,
*Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Applications*, J. Stat. Phys.**153**(2013), no. 2, 339–362. MR**3101200**, DOI 10.1007/s10955-013-0830-9 - T. Endo, N. Konno, H. Obuse, and E. Segawa, Sensitivity of quantum walks to boundary of two-dimensional lattices: approaches from the CGMV method and topological phases, to appear in J. Phys. A.: http://iopscience.iop.org/article/10.1088/1751-8121/aa8c5e/meta
- Volker Enss,
*Asymptotic completeness for quantum mechanical potential scattering. I. Short range potentials*, Comm. Math. Phys.**61**(1978), no. 3, 285–291. MR**523013**, DOI 10.1007/BF01940771 - Jake Fillman and Darren C. Ong,
*Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks*, J. Funct. Anal.**272**(2017), no. 12, 5107–5143. MR**3639523**, DOI 10.1016/j.jfa.2017.01.021 - Jake Fillman, Darren C. Ong, and Zhenghe Zhang,
*Spectral characteristics of the unitary critical almost-Mathieu operator*, Comm. Math. Phys.**351**(2017), no. 2, 525–561. MR**3613513**, DOI 10.1007/s00220-016-2775-8 - F. A. Grünbaum, L. Velázquez, A. H. Werner, and R. F. Werner,
*Recurrence for discrete time unitary evolutions*, Comm. Math. Phys.**320**(2013), no. 2, 543–569. MR**3053772**, DOI 10.1007/s00220-012-1645-2 - Alain Joye and Marco Merkli,
*Dynamical localization of quantum walks in random environments*, J. Stat. Phys.**140**(2010), no. 6, 1025–1053. MR**2684498**, DOI 10.1007/s10955-010-0047-0 - Norio Konno,
*Quantum walks and elliptic integrals*, Math. Structures Comput. Sci.**20**(2010), no. 6, 1091–1098. MR**2735829**, DOI 10.1017/S0960129510000393 - Norio Konno and Etsuo Segawa,
*Localization of discrete-time quantum walks on a half line via the CGMV method*, Quantum Inf. Comput.**11**(2011), no. 5-6, 485–495. MR**2847871**, DOI 10.26421/QIC11.5-6-9 - Norio Konno and Etsuo Segawa,
*One-dimensional quantum walks via generating function and the CGMV method*, Quantum Inf. Comput.**14**(2014), no. 13-14, 1165–1186. MR**3242430**, DOI 10.26421/QIC14.13-14-8 - Shinichi Kotani,
*Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators*, Stochastic analysis (Katata/Kyoto, 1982) North-Holland Math. Library, vol. 32, North-Holland, Amsterdam, 1984, pp. 225–247. MR**780760**, DOI 10.1016/S0924-6509(08)70395-7 - Shinichi Kotani,
*Support theorems for random Schrödinger operators*, Comm. Math. Phys.**97**(1985), no. 3, 443–452. MR**778625**, DOI 10.1007/BF01213407 - Shinichi Kotani,
*One-dimensional random Schrödinger operators and Herglotz functions*, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985) Academic Press, Boston, MA, 1987, pp. 219–250. MR**933826** - S. Kotani,
*Generalized Floquet theory for stationary Schrödinger operators in one dimension*, Chaos Solitons Fractals**8**(1997), no. 11, 1817–1854. MR**1477262**, DOI 10.1016/S0960-0779(97)00042-8 - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157** - D. Ruelle,
*A remark on bound states in potential-scattering theory*, Nuovo Cimento A (10)**61**(1969), 655–662 (English, with Italian summary). MR**246603**, DOI 10.1007/BF02819607 - Barry Simon,
*Kotani theory for one-dimensional stochastic Jacobi matrices*, Comm. Math. Phys.**89**(1983), no. 2, 227–234. MR**709464**, DOI 10.1007/BF01211829 - Barry Simon,
*Analogs of the $m$-function in the theory of orthogonal polynomials on the unit circle*, J. Comput. Appl. Math.**171**(2004), no. 1-2, 411–424. MR**2077215**, DOI 10.1016/j.cam.2004.01.022 - Barry Simon,
*Orthogonal polynomials on the unit circle. Part 1*, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR**2105088**, DOI 10.1090/coll054.1 - Barry Simon,
*Orthogonal polynomials on the unit circle. Part 2*, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR**2105089**, DOI 10.1090/coll/054.2/01 - Gerald Teschl,
*Mathematical methods in quantum mechanics*, 2nd ed., Graduate Studies in Mathematics, vol. 157, American Mathematical Society, Providence, RI, 2014. With applications to Schrödinger operators. MR**3243083**, DOI 10.1090/gsm/157

## Additional Information

**Jake Fillman**- Affiliation: Mathematics (MC0123), Virginia Tech, 225 Stanger Street, Blacksburg, Virginia 24061
- MR Author ID: 1065002
- Email: fillman@vt.edu
**Darren C. Ong**- Affiliation: Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
- MR Author ID: 845285
- Email: darrenong@xmu.edu.my
- Received by editor(s): December 9, 2016
- Published electronically: October 30, 2017
- Communicated by: Michael Hitrik
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 571-580 - MSC (2010): Primary 47B36
- DOI: https://doi.org/10.1090/proc/13872
- MathSciNet review: 3731692