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HERMITIAN u-INVARIANTS OVER FUNCTION FIELDS

OF p-ADIC CURVES

ZHENGYAO WU

(Communicated by Ken Ono)

Abstract. Let p be an odd prime. Let F be the function field of a p-adic
curve. Let A be a central simple algebra of period 2 over F with an involution
σ. There are known upper bounds for the u-invariant of hermitian forms
over (A, σ). In this article we compute the exact values of the u-invariant of
hermitian forms over (A, σ).

1. Introduction

Let A be a central simple algebra over a field K. Let σ be an involution on A.
Let k = Kσ = {x ∈ K | σ(x) = x}. Suppose char k �= 2. Suppose ε ∈ {1,−1}.
If V is a finitely generated right A-module and h : V × V → A is an ε-hermitian

space over (A, σ), the rank of h is defined to be Rank(h) =
dimK(V )

deg(A) ind(A)
. Let

Hermε(A, σ) denote the category of ε-hermitian spaces over (A, σ). The hermitian
u-invariant [Mah05, 2.1] of (A, σ, ε) is defined to be:

u(A, σ, ε) = sup{n|there exists an anisotropic h ∈ Hermε(A, σ),Rank(h) = n}.

Suppose that σ and τ are involutions on A. Mahmoudi has proved that [Mah05,
2.2] if σ and τ are of the same type, then u(A, σ, ε) = u(A, τ, ε); if σ is orthogonal
and τ is symplectic, then u(A, σ, ε) = u(A, τ,−ε); if σ is unitary, then u(A, σ, 1) =
u(A, σ,−1). Thus we have only three types of hermitian u-invariants [Mah05, 2.3],
and we denote:

u(A, σ, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u+(A), if ε = 1 and σ is orthogonal,
or, ε = −1 and σ is symplectic;

u−(A), if ε = −1 and σ is orthogonal,
or, ε = 1 and σ is symplectic;

u0(A), if σ is unitary,

where u+ is called the orthogonal hermitian u-invariant, u− is called the symplectic
hermitian u-invariant and u0 is called the unitary hermitian u-invariant.

In section 3, we provide upper bounds for hermitian u-invariants of division alge-
bras with Springer’s property over Ai(2)-fields. For definitions of Ai(2)-fields and
Springer’s property, see the beginning of section 3.
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Theorem 1.1. Let D be a division algebra over a field K with an involution σ.
Suppose k = Kσ, char k �= 2, ε ∈ {1,−1} and d = deg(D). Suppose k is an
Ai(2)-field and D satisfies the Springer’s property.
(i) If σ is of the first kind, then u+(D) ≤ (1 + 1

d )2
i−1 and u−(D) ≤ (1− 1

d )2
i−1.

(ii) If σ is of the second kind, then u0(D) ≤ 2i−1.

Let p be an odd prime number. Let F be the function field of a smooth projective
geometrically integral curve over a p-adic field. The field F is also called a semi-
global field. Let D be a central division F -algebra with an involution σ of the first
kind. Suppose D �= F . As a consequence of an inequality of Mahmoudi [Mah05, 3.6]
with u(F ) = 8 ([PS10] or [HB10] and [Lee13]), u+(D) ≤ 27 and u−(D) ≤ 10.
Parihar and Suresh [PS13] have proved that u+(D) ≤ 14 and u−(D) ≤ 8. We
obtain exact values of hermitian u-invariants:

Theorem 1.2. Let F be the function field of a curve over a p-adic field with p �= 2.
Let D be a central division algebra over F . Let L/F be a quadratic extension.
(1) If D is quaternion, then u+(D) = 6 and u−(D) = 2.
(2) If D is quaternion and D ⊗F L is division, then u0(D ⊗F L) = 4.
(3) If D is biquaternion, then u+(D) = 5 and u−(D) = 3.

Let A be a central simple algebra over a field k. Suppose char k �= 2 and per(A) =
2. Then, by a special case [Mer81] of the Merkur′ev-Suslin theorem [MS82], A
is Brauer equivalent to H1 ⊗ · · · ⊗ Hn for some quaternion algebras H1, · · · , Hn

over k. Let K/k be a quadratic extension. In [PS13], upper bounds for u+(A),
u−(A), u0(A⊗K) are given and they depend only on u(k) and n. In section 5, we
obtain sharper upper bounds for these hermitian u-invariants. In fact we prove the
following

Theorem 1.3. Let A be a central simple algebra over a field k. Suppose char k �= 2
and per(A) = 2. Suppose A is Brauer equivalent to H1⊗ · · ·⊗Hn for n quaternion
algebras H1, · · · , Hn over k.
(1) u+(A) ≤ ( 45 + 1

5 (
9
4 )

n)u(k);

(2) u−(A) ≤ (− 1
5 + 1

5 (
9
4 )

n)u(k);

(3) u0(A⊗k K) ≤ ( 15 + 3
10 (

9
4 )

n)u(k) for all quadratic extension K/k.

2. Preliminaries

Let K be a field. Let A be a central simple algebra over K with an involution
σ. Let k = Kσ. We suppose char(k) �= 2 throughout the paper. Let V be a
finitely generated right A-module and ε ∈ {1,−1}. A map h : V × V → A is
called an ε-hermitian form over (A, σ) if h is bi-additive; h(xa, yb) = σ(a)h(x, y)b
for all a, b ∈ A, x, y ∈ V ; and h(y, x) = εσ(h(x, y)) for all x, y ∈ V . We call h an
ε-hermitian space if given h(x, y) = 0 for all x ∈ V ; we have y = 0. We say that
h is isotropic if there exists x ∈ V , x �= 0 such that h(x, x) = 0; otherwise we say
that h is anisotropic.

Lemma 2.1 (Morita invariance). Let K, A, σ, k be as before. Suppose A � Mm(D)
for a central division algebra D over K. Suppose σ is an involution on A and
ε ∈ {1,−1}. Then there exists an involution τ on D and ε0 ∈ {1,−1} such that
u(A, σ, ε) = u(D, τ, εε0).

Furthermore, u+(A) = u+(D), u−(A) = u−(D) and u0(A) = u0(D).
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Proof. It is a consequence of [Knu91, ch. I, 9.3.5] and [KMRT98, 4.2]. �

From now on, we mostly focus on central division algebras.

Lemma 2.2. Let D be a central division algebra over a field K with an involution
σ. Let k = Kσ, char k �= 2. Suppose k is a non-archimedean local field.
(1) If σ is of the first kind and D �= k, then u+(D) = 3, u−(D) = 1.
(2) If σ is of the second kind, then u0(D) = 2.

Proof. See [Tsu61, Thm. 1, Thm. 3] and [Sch85, ch. 10, 2.2]. �

We fix the following notation from 2.3 to 2.9. Let (k, v) be a complete discrete
valued field with residue field k, char k �= 2. Let D be a finite-dimensional division
k-algebra with center K with an involution σ such that Kσ = k. By [CF67, ch. II,
10.1], v extends to a valuation v′ on K such that v′(x) = 1

[K:k]v(NK/k(x)) for

all x ∈ K∗. By [Wad86], v′ extends to a valuation w on D such that w(x) =
1

ind(D)v
′(NrdD/K(x)) for all x ∈ D∗. Since NrdD/K(x) = NrdD/K(σ(x)), we have

w(σ(x)) = w(x) for all x ∈ D. Let Rw = {x ∈ D | w(x) ≥ 0} and mw = {x ∈
D | w(x) > 0}. Let D = Rw/mw be the residue division algebra (see [Rei03, 13.2])

of (D,w) over k with involution σ such that σ(x) = σ(x) for all x ∈ Rw, where x =
x+mw. Let h : V ×V → D be an ε-hermitian space over (D, σ). By [Knu91, Ch. I,
6.2], V is free with an orthogonal basis {e1, . . . , en} such that h(ei, ei) = ai for
some ai ∈ D with σ(ai) = εai for all 1 ≤ i ≤ n; and h(ei, ej) = 0 for all 1 ≤ i ≤ n,
1 ≤ j ≤ n and i �= j. We denote h = 〈a1, · · · , an〉. If w(ai) = 0 for all
1 ≤ i ≤ n, then h = 〈a1, · · · , an〉 ∈ Hermε(D, σ). Let tD be a parameter of (D,w).
By [Lar99, 2.7], there exists πD ∈ D such that w(πD) ≡ w(tD) mod 2w(D∗) and
σ(πD) = ε′πD for some ε′ ∈ {1,−1}. Larmour proved the following hermitian
analogue of a theorem of Springer.

Proposition 2.3 ([Lar06, 3.4] or [Lar99, 3.27]). Let k, v, D, K, σ, w, h, πD and

ε′ be as above. There exist h1 ∈ Hermε(D, σ), h2 ∈ Hermεε′(D, Int(πD) ◦ σ), with
h � h1 ⊥ h2πD and each diagonal entries of h1 and h2 have w-value 0. Further,
the following are equivalent: (i) h is isotropic; (ii) h1 or h2 is isotropic; (iii) h1 or
h2 is isotropic.

Corollary 2.4. u(D, σ, ε) = u(D, σ, ε) + u(D, Int(πD) ◦ σ, εε′).

Proof. Suppose h ∈ Hermε(D, σ) and h � h1 ⊥ h2πD as in Proposition 2.3. Since
Rank(h) = Rank(h1)+Rank(h2) = Rank(h1)+Rank(h2), if Rank(h) > u(D, σ, ε)+

u(D, Int(πD) ◦ σ, εε′), then
Rank(h1) > u(D, σ, ε)

or
Rank(h2) > (D, Int(πD) ◦ σ, εε′).

Then h1 or h2 is isotropic. By Proposition 2.3, h is isotropic. Hence u(D, σ, ε) ≤
u(D, σ, ε) + u(D, Int(πD) ◦ σ, εε′).

Conversely, suppose g1 = 〈a1, · · · , am〉 ∈ Hermε(D, σ) such that σ(ai) = εai,
m = u(D, σ, ε) and g1 is anisotropic. Since ai �= 0, there exists bi ∈ Rw, w(bi) = 0
such that bi = ai. Let ci = 1

2 (bi + εσ(bi)). Then σ(ci) = εci and ci = ai.

Let h1 = 〈c1, · · · , cm〉 ∈ Hermε(D, σ). Then h1 = g1 and by [Lar06, 2.3], h1 is
anisotropic.
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Suppose g2 = 〈am+1, · · · , am+n〉 ∈ Hermεε′(D, Int(πD) ◦ σ) such that g2 is
anisotropic. Similar to the previous paragraph, there exists h2 ∈
Hermεε′(D, Int(πD) ◦ σ) such that h2 = g2 and h2 is anisotropic.

By Proposition 2.3, h = h1 ⊥ h2πD is anisotropic and Rank(h) = m + n.

u(D, σ, ε) ≥ u(D, σ, ε) + u(D, Int(πD) ◦ σ, εε′). �

Lemma 2.5. Suppose D is ramified at the discrete valuation of k, Z(D) = k and
per(D)|2. Then there exist an involution σ on D of the first kind and elements
α, πD ∈ D satisfying the following conditions:

(a) σ is an involution of the second kind;
(b) α2 is a unit at the valuation v of k and Z(D) = k(α);

(c) πD is a parameter of D, σ(πD) = ±πD and Int(πD) ◦ σ is of the first kind.

Proof. Suppose D is ramified. Then D is Brauer equivalent to D0⊗(u, π) with D0 a
central division algebra over k unramified at v, π ∈ k∗ a parameter and u ∈ k∗ \k∗2
a unit at v. Furthermore, D Brauer is equivalent to D0⊗k(

√
u) and Z(D) = k(

√
u)

[TW15, 8.77].
(a) By [CDT95, prop. 4], the non-trivial automorphism of Z(D)/k extends to

an involution on D of the second kind and it can be lifted to an involution σ on D
of the first kind.

(b) Since k is complete, by [CDT95, p. 53, Lem. 1], there exists α ∈ D such that

α2 ∈ Z(D), α ∈ Z(D) corresponds to
√
u in the isomorphism Z(D) = k(

√
u) and

σ(α) = −α.

(c) By [JW90, prop. 1.7], there exists a parameter tD ∈ D such that Int(tD) is

the non-trivial Z(D)/k-automorphism. Since σ is of the second kind and Int(tD)

induces the non-trivial automorphims of Z(D), Int(tD) ◦ σ is of the first kind. Since

σ is an involution, w(tD) = w(σ(tD)) and hence σ(tD)t−1
D �= 0 ∈ D.

Case 1. Suppose that σ(tD)t−1
D = 1. Let πD = tD + σ(tD). Then σ(πD) = πD.

Since πDt−1
D = 1 + σ(tD)t−1

D , πDt−1
D = 1 + σ(tD)t−1

D = 1 + 1 = 2 �= 0. Hence

w(πD) = w(tD). Since πDt−1
D = 2, Int(πD) ◦ σ = Int(tD) ◦ σ and hence Int(πD) ◦ σ

is of the first kind. Thus πD satisfies (c).

Case 2. Suppose that σ(tD)t−1
D �= 1. Let πD = αtD−σ(αtD). Then σ(πD) = −πD.

We have πDt−1
D = α− σ(tD)σ(α)t−1

D . Since σ(α) = −α and tDαt−1
D = −α, we have

πDt−1
D = α− σ(tD)σ(α)t−1

D

= α+ σ(tD)t−1
D tDαt−1

D

= α+ σ(tD)t−1
D (−α)

= (1− σ(tD)t−1
D )α �= 0.
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Hence w(πD) = w(tD). Since σ(α) = −α, α2 ∈ k and tDαt−1
D = −α, we have

σ(tD)ασ(tD)−1 = −α and

(πDαπ−1
D + α)πDt−1

D

= πDαt−1
D + απDt−1

D

= (αtD − σ(tD)σ(α))αt−1
D + α(αtD − σ(tD)σ(α))t−1

D

= αtDαt−1
D − σ(tD)σ(α)αt−1

D + α2 + ασ(tD)αt−1
D

= −α2 + σ(tD)α2t−1
D + α2 + α(σ(tD)ασ(tD)−1)σ(tD)t−1

D

= α2σ(tD)t−1
D − α2σ(tD)t−1

D = 0.

Since πDt−1
D �= 0, πDαπ−1

D + α = 0 and hence (Int(πD) ◦ σ)(α) = α. Thus πD

satisfies (c).

To summarize, σ, α and πD satisfy the required properties. �

Corollary 2.6. Suppose Z(D) = k and per(D) = 2.
(1) If D is unramified at the discrete valuation of k, then

u+(D) = 2u+(D) and u−(D) = 2u−(D).

(2) If D is ramified at the discrete valuation of k, then

u+(D) = u0(D) + u+(D) and u−(D) = u0(D) + u−(D).

Proof. Suppose D is unramified. Then we can take πD = π, where π is a parameter
of k. Since σ(π) = π, we have ε′ = 1 and Int(πD) ◦σ = σ. Hence, by Corollary 2.4,
we have the required result.

Suppose D is ramified. Then choose σ and πD as in Lemma 2.5. Then, by
Corollary 2.4, we have the required result. �

Let K/k be a quadratic extension. Let D be a central division algebra over k
with an involution σ of the first kind. Then σ ⊗ ι is an involution on D ⊗k K of
the second kind with ι being the non-trivial automorphism of K/k.

Remark 2.7. Suppose D ⊗ K is division. Then there are three possibilities of
ramification:

(1) K/k is unramified and D ⊗K/K is unramified;
(2) K/k is unramified and D ⊗K/K is ramified;
(3) K/k is ramified and D ⊗K/K is unramified.
We show that “K/k is ramified and D ⊗K/K is ramified” cannot happen.
In fact, if K/k is ramified, then K = k(

√
π) for some parameter π ∈ k and

K = k. If D/k is unramified, then D ⊗ K/K is unramified. Suppose D/k is
ramified. Then D is Brauer equivalent to D0 ⊗ (u, π) for some D0 unramified on
k and u ∈ k a unit at the valuation of k [TW15, 8.77]. Thus D ⊗ K is Brauer
equivalent to D0 ⊗K and hence D ⊗K/K is unramified.

Consequently, (2) and (3) can be shortened to
(2) D ⊗K/K is ramified. (3) K/k is ramified.

Remark 2.8. Suppose we are in case (2) of Remark 2.7. Suppose K = k(
√
λ) and

D is Brauer equivalent to D0 ⊗ (u, π) for some D0 unramified on k and u ∈ k a

unit at the valuation of k. Then K = k(
√
λ), Z(D) = k(

√
u) and Z(D ⊗K) =

k(
√
u,

√
λ). Here u and λ are in different square classes of k, otherwise (u, π)K



914 ZHENGYAO WU

is split and hence D ⊗ K is unramified over K. Since D ⊗K = D ⊗ K = D ⊗
k(
√
u,

√
λ) and D has an involution of the first kind, D ⊗K has three possible types

of involutions of the second kind with fixed fields k1 = k(
√
u), k2 = k(

√
λ) and k3 =

k(
√
uλ) respectively. The corresponding u0(D ⊗K) are written as u0(D ⊗K/k1),

u0(D ⊗K/k2) and u0(D ⊗K/k3).

Corollary 2.9. Let K/k be a quadratic extension and let ι be the non-trivial au-
tomorphism of K/k. Let D be a central division algebra over k with an involution
σ of the first kind such that D ⊗k K is division.

(1) If D⊗K is unramified at the discrete valuation of K and K/k is unramified,
then u0(D ⊗K) = 2u0(D ⊗K).

(2) If D⊗K/K is ramified, then u0(D⊗K) = u0(D⊗K/k1) + u0(D⊗K/k3).
(3) If K/k is ramified, then u0(D ⊗K) = u+(D) + u−(D).

Proof. (1) Suppose D is unramified and K/k is unramified. Then D ⊗K = D⊗K
and K/k is a quadratic extension. Let π be a parameter of k. Take πD = π.

Then σ(πD) = πD and Int(πD) ◦ (σ ⊗ ι) = σ ⊗ ι. By Corollary 2.4, u0(D ⊗K) =
2u0(D ⊗K).

(2) Suppose D is ramified. Suppose σ and πD are as in Lemma 2.5. Then

the fixed field of σ ⊗ ι is k3 and the fixed field of Int(πD) ◦ (σ ⊗ ι) is k1 (where
k1 and k3 are as in Remark 2.8). Thus, by Corollary 2.4, we have u0(D ⊗ K) =
u0(D ⊗K/k1) + u0(D ⊗K/k3).

(3) Suppose K/k is ramified. Let σ0 be an involution of the first kind on D and
σ � σ0 ⊗ γ, where γ is the canonical involution of (u, π). We have D ⊗K = D

and σ0 ⊗ ι = σ. Let πD =
√
π ∈ K ⊂ D ⊗K. Then Int(πD) ◦ (σ0 ⊗ ι) = σ. Thus,

by Corollary 2.4, u(D ⊗K,σ, ε) = u(D, σ0, ε) + u(D, σ0,−ε). Hence u0(D ⊗K) =
u+(D) + u−(D). �

We end this section with the following well-known lemma.

Lemma 2.10. Let k be a discrete valued field with residue field k and completion

k̂. Suppose char(k) �= 2. Let D be a division algebra over k with center K. Let σ

be an involution on D such that Kσ = k. If D ⊗ k̂ is division, then u(D, σ, ε) ≥
u(D ⊗ k̂, σ̂, ε), where σ̂ = σ ⊗ Id

̂k.

Proof. Let v be the discrete valuation on k and π ∈ k be a parameter. Since D⊗ k̂
is division, v extends to a valuation w on D. Let ε = ±1 and Symε(D, σ) = {x ∈
D | σ(x) = εx}. Let e1, · · · , er be a k-basis of Symε(D, σ). Let a ∈ Symε(D, σ)⊗ k̂

and write a = a1e1+ · · ·+arer with ai ∈ k̂. Let bi ∈ k be such that ai ≡ bi modulo
πew(a)+1 and b = b1e1 + · · ·+ brer ∈ Symε(D, σ), where e is the ramification index

[w(D∗) : v(k∗)]. Then w(a) = w(b) and ab−1 = 1 ∈ D ⊗ k̂.

Let s = ab−1 ∈ D ⊗ k̂. Then w(s) = 0 and s = 1

a = sb =⇒ σ̂(a) = σ(b)σ̂(s) =⇒ εa = εbσ̂(s)
=⇒ a = bσ̂(s) =⇒ sb = bσ̂(s)
=⇒ s = (Int(b) ◦ σ̂)(s) =⇒ (Int(b) ◦ σ̂)|k(s) = Idk(s) .
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Since k(s) is complete, by Hensel’s lemma, there exists c ∈ k(s) such that c2 = s

and c2 = s = 1 ∈ k(s). Then

(Int(b) ◦ σ̂)(c) = c =⇒ bσ̂(c) = cb
=⇒ a = sb = ccb = cbσ̂(c)

=⇒ 〈a〉 � 〈b〉 ⊗ k̂.

Let h be an ε-hermitian form over (D ⊗ k̂, σ). Since D ⊗ k̂ is division, h =

〈α1, · · · , αn〉 for some αi ∈ Symε(D, σ) ⊗ k̂. For each αi, let βi ∈ Symε(D, σ) be

such that 〈αi〉 � 〈βi〉 ⊗ k̂ and h0 = 〈β1, · · · , βn〉. Then h0 is an ε-hermitian form

over (D, σ) and h0 ⊗ k̂ � h. If h is anisotropic over k̂, then h0 is anisotropic. In

particular, u(D, σ, ε) ≥ u(D ⊗ k̂, σ ⊗ Id, ε). �

3. Division algebras over Ai(2)-fields

A field k is called an Ai(m)-field [Lee13, 2.1] if every system of r homogeneous
forms of degree m in more than rmi variables over k has a non-trivial simultaneous
zero over a field extension L/k such that gcd(m, [L : k]) = 1.

Let A be a central simple algebra over a field k. We say that A satisfies the
Springer’s property if for any involution σ on A of the first kind, ε ∈ {1,−1} and
for any odd degree extension L/k, if h is an anisotropic ε-hermitian space over
(A, σ), then h ⊗ L is anisotropic. In [PSS01], Parimala, Sridharan and Suresh
have shown that Springer’s property holds for hermitian or skew-hermitian spaces
over quaternion algebras with involution of the first kind. In [Wu15], the author
has shown that Springer’s property holds for hermitian or skew-hermitian spaces
over central simple algebras with involution of the first kind over function fields of
p-adic curves.

Now we prove Theorem 1.1(i).

Proof. Let σ be an orthogonal involution on D. Let Symε(D, σ) = {x ∈ D | σ(x) =
εx} and r = dimk(Sym

ε(D, σ)). Then r = d(d+ε)/2 [KMRT98, 2.6]. Let e1, · · · , er
be a k-basis of Symε(D, σ). Let h be an ε-hermitian form over (D, σ) of rank
n > (1 + ε

d )2
i−1. Then for x ∈ Dn, we have

h(x, x) = q1(x, x)e1 + · · ·+ qr(x, x)er,

with each qi a quadratic form over k in d2n variables [Mah05, proof of prop. 3.6].
Since k is an Ai(2)-field and d2n > d(d+ε)2i−1 = r2i, there exists an odd degree

extension L/k such that {q1, · · · , qr} have a simultaneous non-trivial zero over L.
Then hL is isotropic over DL. By Springer’s property, h is isotropic over D. Hence
u(D, σ, ε) ≤ (1 + ε

d )2
i−1.

Similarly, if σ is a symplectic involution on D, then r = d(d − ε)/2 and hence
u(D, σ, ε) ≤ (1− ε

d )2
i−1. �

Next, we prove Theorem 1.1(ii).

Proof. Let σ be an involution on D of the second kind. Let Sym(D) = {x ∈ D |
σ(x) = x}. Then Sym(D) is vector space over k and dimk Sym(D) = d2, where
d2 = dimK(D). Let e1, · · · , ed2 be a k-basis of Sym(D). Let h be a hermitian form
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over (D, σ) of rank n > 2i−1. Then, for x ∈ Dn, h(x, x) ∈ Sym(D) and we have

h(x, x) = q1(x, x)e1 + · · ·+ qd2(x, x)ed2 ,

with each qi a quadratic form over k in 2d2n variables.
Since k is an Ai(2)-field and 2d2n > 2d22i−1 = d22i, there exists an odd degree

extension L/k such that {q1, · · · , qd2} have a simultaneous non-trivial zero over L.
In particular, hL is isotropic over DL. By Springer’s property, h is isotropic over
D. Hence u0(D) ≤ 2i−1. �
Corollary 3.1. If D is a quaternion division algebra over an Ai(2)-field k and σ
is of the first kind, then u+(D) ≤ 3 · 2i−2 and u−(D) ≤ 2i−2.

Proof. Since, by [PSS01, 3.5], (D, σ, ε) satisfies Springer’s property, the corollary
follows from Theorem 1.1(i). �
Corollary 3.2. If D is a quaternion division algebra over a global function field
k, then u+(D) = 3, u−(D) = 1, and u0(D) = 2.

Proof. By the Chevalley-Warning theorem [Che35,War35], every finite field is a C1-
field. By the Tsen-Lang theorem [Lan52], every global function field is a C2-field.
Since every C2-field is an A2(2)-field [Lee13, between 2.1 and 2.2], by Theorem
1.1(i), u+(D) ≤ 3 and u−(D) ≤ 1 and by Theorem 1.1(ii), u0(D) ≤ 2. The equality
follows from Lemmas 2.10 and 2.2. �
Corollary 3.3. Let F be the function field of an integral variety X over a p-adic
field with p �= 2. Let D be a quaternion algebra over F . If dim(X) = n, then
u+(D) ≤ 3 · 2n and u−(D) ≤ 2n.

Proof. Since D is a quaternion algebra, by [PSS01, 3.5], D satisfies the Springer’s
property. Since dim(X) = n, by [HB10] and [Lee13], F is an An+2(2)-field. Hence
the corollary follows from Corollary 3.1. �
Corollary 3.4. Let F be the function field of a p-adic curve. Let D be a division
algebra over F with an involution of the first kind.
(1) If D is a quaternion division algebra, then u+(D) ≤ 6 and u−(D) ≤ 2.
(2) If D is a biquaternion division algebra, then u+(D) ≤ 5 and u−(D) ≤ 3.

Proof. By [Sal97, 3.4; Sal98], deg(D) = d = 2 or 4. If d = 2, then D is a quaternion
algebra and the result follows from Corollary 3.3. Suppose d = 4. By [Wu15, 1.5],
D satisfies Springer’s property. Since F is an A3(2)-field, the result follows from
Theorem 1.1(i). �
Corollary 3.5. Let F be the function field of a p-adic curve. Let L/F be a quadratic
extension. Let D be a division algebra over F with an involution of the first kind.
Then u0(D ⊗F L) ≤ 4.

Proof. By [Wu15, 1.5], D satisfies Springer’s property. Since F is an A3(2)-field,
the result follows from Theorem 1.1(ii). �

4. Division algebras over semi-global fields

Let p be an odd prime number. Let F be the function field of a curve over a p-
adic field. Let D be a division algebra over F with an involution σ. In this section,
we show that the bounds in Corollary 3.4 for the u-invariants of the hermitian of
forms over central simple algebras over F are in fact exact values. We also compute
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u0(D) if D is a quaternion division algebra with an involution of the second kind
over F .

Lemma 4.1. Let k be a complete discrete valued field with residue field k. Suppose
k is a non-archimedean local field or a global function field with char(k) �= 2. Let D
be a division algebra over k with an involution of the first kind and K/k a quadratic
extension.
(1) If D is a quaternion division algebra, then u+(D) = 6 and u−(D) = 2.
(2) If D is a biquaternion algebra, then u+(D) = 5 and u−(D) = 3.
(3) If D ⊗k K is a division algebra, then u0(D ⊗k K) = 4.

Proof. (1) Suppose D is an unramified quaternion algebra. Then D is a quaternion
algebra. Since k is either a local field or a global function field, by Lemma 2.2 and
Corollary 3.2, we have u+(D) = 3, u−(D) = 1 and u−(D) = 2. Thus, by Corollary
2.6(1), u+(D) = 2 ∗ 3 = 6 and u−(D) = 2 ∗ 1 = 2.

Suppose D is a ramified quaternion algebra. ThenD is a quadratic extension of k
and by Lemma 2.2 and Corollary 2.6(2), u+(D) = 2+4 = 6 and u−(D) = 2+0 = 2.

(2) Suppose D is a biquaternion algebra. Since k is a complete discrete valued
field with k a global field or local field, D is ramified by a theorem of Albert
[Lam05, III, 4.8] and a theorem of Springer [Lam05, VI, 1.9]. ThusD is a quaternion
algebra and hence by Lemma 2.2 and Corollary 2.6(2), u+(D) = 2 + 3 = 5 and
u−(D) = 2 + 1 = 3.

(3) Suppose D⊗K is a division algebra. Then, by Corollary 2.9, we have either
u0(D ⊗ K) = 2u0(D ⊗K) or u0(D ⊗ K) = u0(D ⊗ K/k1) + u0(D ⊗ K/k3) or
u0(D ⊗ K) = u+(D0) + u−(D0) for some central division algebra D0 unramified
over k with deg(D) = deg(D0).

In the case of Corollary 2.9(1), u0(D ⊗K) = 2u0(D ⊗K) = 2 ∗ 2 = 4.
In the case of Corollary 2.9(2), u0(D⊗K) = u0(D⊗K/k1)+u0(D⊗K/k3). Since

k is a p-adic field or a global field, so are k1 and k3. We have u(k1) = u(k3) = 4.
Since D ⊗K is a quadratic extension of k1, we have u0(D ⊗K/k1) =

1
2u(k1) = 2.

Similarly, u0(D⊗K/k3) =
1
2u(k3) = 2. Thus, we also have u0(D⊗K) = 2+2 = 4.

In the case of Corollary 2.9(3), u0(D⊗K) = u+(D0)+ u−(D0) = 3+ 1 = 4. �

Now we prove our main result Theorem 1.2.

Proof. Since D is a division algebra, by [RS13, 2.6], there exists a divisorial discrete
valuation v of F such that D ⊗ Fv is division. Since v is a divisorial discrete
valuation, the residue field at v is either a p-adic field or a global function field.

(1) and (3) follow from Corollary 3.4, Lemma 4.1(1)(2) and Lemma 2.10.
(2) By [RS13, 2.6], there exists a divisorial discrete valuation v of F such that

D ⊗ L⊗ Fv is division. Thus, the result follows from Corollary 3.5, Lemma 4.1(3)
and Lemma 2.10. �

5. Tensor product of quaternions over arbitrary fields

In this section, we revisit and prove Theorem 1.3. We begin with the following.

Lemma 5.1. For n ≥ 1, let an = 4
5+

1
5 (

9
4 )

n, bn = − 1
5+

1
5 (

9
4 )

n and cn = 1
5+

3
10 (

9
4 )

n.
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Then

an+1 =
3

4
an + cn, bn+1 =

3

2
bn +

1

2
cn, cn =

1

2
an + bn,

3

2
an ≥ cn ≥ 3

2
bn,

for all n ≥ 1.

Proof. It follows from definitions of an, bn and cn above. �

Now we prove Theorem 1.3.

Proof. By Lemma 2.1, we may assume that A = H1⊗· · ·⊗Hn. Let σ = τ1⊗· · ·⊗τn,
where τi is the canonical involutions of Hi for 1 ≤ i ≤ n. For n ≥ 1, let an =
4
5 + 1

5 (
9
4 )

n, bn = − 1
5 + 1

5 (
9
4 )

n and cn = 1
5 + 3

10 (
9
4 )

n.
We proceed by induction. For n = 1, by [Mah05, 3.4] and [Lee84, 2.10] we

have u+(H1) ≤ a1u(k), by [Sch85, ch. 10, 1.7], we have u−(H1) ≤ b1u(k) and by
[PS13, 4.4], we have u0(H1) ≤ c1u(k).

Suppose u+(H1 ⊗k · · · ⊗k Hn) ≤ anu(k), u
−(H1 ⊗k · · · ⊗k Hn) ≤ bnu(k) and

u0(H1 ⊗k · · · ⊗k Hn) ≤ cnu(k).
Let H1, · · · , Hn+1 be quaternion algebas over k, τi the canonical involution of

Hi and σ = τ1 ⊗ · · · ⊗ τn+1 on A = H1 ⊗ · · · ⊗Hn+1. Since Hn+1 is a quaternion
algebra and τn+1 is the canonical involution, there exist λn+1, μn+1 ∈ H∗

n+1 such
that τn+1(λn+1) = −λn+1, τn+1(μn+1) = −μn+1, λn+1μn+1 = −μn+1λn+1 and
k(λn+1)/k is a quadratic extension. Let λ = 1⊗ · · · ⊗ 1⊗ λn+1 ∈ A, μ = 1⊗ · · · ⊗
1⊗μn+1 ∈ A and Ã be the centralizer of k(λ) in A. Then Ã = H1⊗· · ·⊗Hn⊗k(λ).
Let σ1 = σ|Ã and σ2 = Int(μ−1) ◦ σ1. By [Mah05, 3.1, 3.2], we have σ1 is unitary,
σ2 and σ are of the same type and

u(A, σ, ε) ≤ min{u(Ã, σ1, ε) +
1
2u(Ã⊗ k(λ), σ2,−ε),

1
2u(Ã⊗ k(λ), σ1, ε) + u(Ã⊗ k(λ), σ2,−ε)}.

Since σ1 is unitary and Ã = H1⊗k · · ·⊗kHn⊗k(λ), by the induction hypothesis,

we have u(Ã, σ1, ε) ≤ cnu(k). By [PS13, 4.2],

u(Ã, σ2,−ε) = u(H1 ⊗k · · · ⊗k Hn ⊗ k(λ), σ2,−ε)

≤ 3

2
u(H1 ⊗k · · · ⊗k Hn, τ1 ⊗ · · · ⊗ τn,−ε).

Since both σ and τ1⊗· · ·⊗τn are of the first kind and of different types, we have

u+(H1⊗k · · ·⊗kHn+1) ≤ min{1
2
(
3

2
an)+cn,

3

2
an+

1

2
cn}u(k) =

3

4
an+cn = an+1u(k),

u−(H1⊗k· · ·⊗kHn+1) ≤ min{1
2
(
3

2
bn)+cn,

3

2
bn+

1

2
cn}u(k) =

3

2
bn+

1

2
cn = bn+1u(k).

Finally by [PS13, 4.3], u0(H1 ⊗k · · · ⊗k Hn+1 ⊗k K) ≤ min{ 1
2an+1 + bn+1, an+1 +

1
2bn+1}u(k) = 1

2an+1 + bn+1 = cn+1u(k). Here Lemma 5.1 was used in all three
calculations. �

Remark. When n = 2, a2 = 29
16 is the same as that of [PS13, 4.5], b2 = 13

16 is

smaller than the bound 17
16 of [PS13, 4.6, 4.7]. When k is a semi-global field,

u−(D) ≤ � 13
2 � = 6 is smaller than the bound 8 of [PS13, 4.8].

When n ≥ 3, an is smaller than the bound 32n−6

4n · 213 of [PS13, 4.10, 4.11].
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