Generation of Siegel modular function fields of even level
HTML articles powered by AMS MathViewer
- by Dong Sung Yoon
- Proc. Amer. Math. Soc. 146 (2018), 921-931
- DOI: https://doi.org/10.1090/proc/13768
- Published electronically: September 13, 2017
- PDF | Request permission
Abstract:
For positive integers $g$ and $N$, let $\mathcal {F}_N^{(g)}$ be the field of meromorphic Siegel modular functions of genus $g$ and level $N$ whose Fourier coefficients belong to the $N$th cyclotomic field. We construct explicit generators of $\mathcal {F}_N^{(g)}$ over $\mathcal {F}_1^{(g)}$ by making use of a quotient of theta constants, when $g\geq 2$ and $N$ is even.References
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673, DOI 10.1007/978-3-662-06307-1
- Ick Sun Eum, Ja Kyung Koo, and Dong Hwa Shin, Some applications of modular units, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 91–106. MR 3439125, DOI 10.1017/S0013091514000352
- Jun-ichi Igusa, On the graded ring of theta-constants. II, Amer. J. Math. 88 (1966), 221–236. MR 200482, DOI 10.2307/2373057
- J. K. Koo, G. Robert, D. H. Shin, and D. S. Yoon, On Siegel invariants of certain CM-fields, submitted, http://arxiv.org/abs/1508.05602.
- J. K. Koo, D. H. Shin, and D. S. Yoon, Generators of Siegel modular function field of higher genus and level, submitted, http://arxiv.org/abs/1604.01514.
- Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603, DOI 10.1007/978-1-4757-1741-9
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960, DOI 10.1007/978-1-4612-4752-4
- Goro Shimura, Theta functions with complex multiplication, Duke Math. J. 43 (1976), no. 4, 673–696. MR 424705
- Goro Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, American Mathematical Society, Providence, RI, 2000. MR 1780262, DOI 10.1090/surv/082
Bibliographic Information
- Dong Sung Yoon
- Affiliation: Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- MR Author ID: 950306
- Email: math_dsyoon@kaist.ac.kr
- Received by editor(s): September 7, 2016
- Received by editor(s) in revised form: April 5, 2017
- Published electronically: September 13, 2017
- Additional Notes: The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030015).
- Communicated by: Kathrin Bringmann
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 921-931
- MSC (2010): Primary 11F46; Secondary 14K25
- DOI: https://doi.org/10.1090/proc/13768
- MathSciNet review: 3750206