The degree of a tropical basis
HTML articles powered by AMS MathViewer
- by Michael Joswig and Benjamin Schröter
- Proc. Amer. Math. Soc. 146 (2018), 961-970
- DOI: https://doi.org/10.1090/proc/13787
- Published electronically: October 5, 2017
- PDF | Request permission
Abstract:
We give an explicit upper bound for the degree of a tropical basis of a homogeneous polynomial ideal. As an application $f$-vectors of tropical varieties are discussed. Various examples illustrate differences between Gröbner and tropical bases.References
- Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168–195. MR 733052
- T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas, Computing tropical varieties, J. Symbolic Comput. 42 (2007), no. 1-2, 54–73. MR 2284285, DOI 10.1016/j.jsc.2006.02.004
- U. Betke and P. McMullen, Lattice points in lattice polytopes, Monatsh. Math. 99 (1985), no. 4, 253–265. MR 799674, DOI 10.1007/BF01312545
- Andrew J. Chan and Diane Maclagan, Groebner bases over fields with valuations, 2013, Preprint arXiv:1303.0729.
- Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Algorithms and Computation in Mathematics, vol. 25, Springer-Verlag, Berlin, 2010. Structures for algorithms and applications. MR 2743368, DOI 10.1007/978-3-642-12971-1
- Thomas W. Dubé, The structure of polynomial ideals and Gröbner bases, SIAM J. Comput. 19 (1990), no. 4, 750–775. MR 1053942, DOI 10.1137/0219053
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73. MR 1785292
- Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, DOI 10.1007/BF01206635
- Sven Herrmann, Anders Jensen, Michael Joswig, and Bernd Sturmfels, How to draw tropical planes, Electron. J. Combin. 16 (2009), no. 2, Special volume in honor of Anders Björner, Research Paper 6, 26. MR 2515769, DOI 10.37236/72
- Kerstin Hept and Thorsten Theobald, Tropical bases by regular projections, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2233–2241. MR 2495256, DOI 10.1090/S0002-9939-09-09843-8
- Anders N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties, Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html.
- Y. N. Lakshman and Daniel Lazard, On the complexity of zero-dimensional algebraic systems, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 217–225. MR 1106424
- Ernst W. Mayr and Albert R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. in Math. 46 (1982), no. 3, 305–329. MR 683204, DOI 10.1016/0001-8708(82)90048-2
- Ernst W. Mayr and Stephan Ritscher, Degree bounds for Gröbner bases of low-dimensional polynomial ideals, ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2010, pp. 21–27. MR 2920532, DOI 10.1145/1837934.1837945
- Thomas Markwig and Yue Ren, Computing tropical varieties over fields with valuation, 2016, Preprint arXiv:1612.01762.
- Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015. MR 3287221, DOI 10.1090/gsm/161
- David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, DOI 10.1515/advg.2004.023
- Bernd Sturmfels, Algorithms in invariant theory, 2nd ed., Texts and Monographs in Symbolic Computation, SpringerWienNewYork, Vienna, 2008. MR 2667486
- Günter M. Ziegler, Lectures on $0/1$-polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 1–41. MR 1785291
Bibliographic Information
- Michael Joswig
- Affiliation: Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
- ORCID: 0000-0002-4974-9659
- Email: joswig@math.tu-berlin.de
- Benjamin Schröter
- Affiliation: Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
- Email: schroeter@math.tu-berlin.de
- Received by editor(s): December 1, 2015
- Received by editor(s) in revised form: April 19, 2017
- Published electronically: October 5, 2017
- Additional Notes: Research by the authors was carried out in the framework of Matheon supported by Einstein Foundation Berlin. Further support by Deutsche Forschungsgemeinschaft (SFB-TRR 109: “Discretization in Geometry and Dynamics” and SFB-TRR 195: “Symbolic Tools in Mathematics and their Application”) is gratefully acknowledged
- Communicated by: Irena Peeva
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 961-970
- MSC (2010): Primary 13P10, 14T05
- DOI: https://doi.org/10.1090/proc/13787
- MathSciNet review: 3750210