Derivatives of Blaschke products whose zeros lie in a Stolz domain and weighted Bergman spaces
HTML articles powered by AMS MathViewer
- by Atte Reijonen
- Proc. Amer. Math. Soc. 146 (2018), 1173-1180
- DOI: https://doi.org/10.1090/proc/13791
- Published electronically: October 6, 2017
- PDF | Request permission
Abstract:
For a Blaschke product $B$ whose zeros lie in a Stolz domain, we find a condition regarding $\omega$ which guarantees that $Bâ$ belongs to the Bergman space $A^p_\omega$. In addition, the sharpness of this condition is considered.References
- Patrick Ahern, The Poisson integral of a singular measure, Canad. J. Math. 35 (1983), no. 4, 735â749. MR 723040, DOI 10.4153/CJM-1983-042-0
- P. R. Ahern and D. N. Clark, On inner functions with $H^{p}$-derivative, Michigan Math. J. 21 (1974), 115â127. MR 344479, DOI 10.1307/mmj/1029001255
- Peter Colwell, Blaschke products, University of Michigan Press, Ann Arbor, MI, 1985. Bounded analytic functions. MR 779463, DOI 10.3998/mpub.9690151
- N. Danikas and Chr. Mouratides, Blaschke products in $Q_p$ spaces, Complex Variables Theory Appl. 43 (2000), no. 2, 199â209. MR 1812465, DOI 10.1080/17476930008815311
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Daniel Girela and JosĂ© Ăngel PelĂĄez, On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain, Canad. Math. Bull. 49 (2006), no. 3, 381â388. MR 2252260, DOI 10.4153/CMB-2006-038-x
- Daniel Girela, JosĂ© Ăngel PelĂĄez, and Dragan VukotiÄ, Integrability of the derivative of a Blaschke product, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 673â687. MR 2360523, DOI 10.1017/S0013091504001014
- Daniel Girela, JosĂ© Ăngel PelĂĄez, and Dragan VukotiÄ, Interpolating Blaschke products: Stolz and tangential approach regions, Constr. Approx. 27 (2008), no. 2, 203â216. MR 2336422, DOI 10.1007/s00365-006-0651-6
- Alan Gluchoff, The mean modulus of a Blaschke product with zeroes in a nontangential region, Complex Variables Theory Appl. 1 (1983), no. 4, 311â326. MR 706988, DOI 10.1080/17476938308814022
- Janne Gröhn and Artur Nicolau, Inner functions in certain Hardy-Sobolev spaces, J. Funct. Anal. 272 (2017), no. 6, 2463â2486. MR 3603305, DOI 10.1016/j.jfa.2016.12.001
- Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653, DOI 10.1007/978-1-4612-0497-8
- Miroljub JevtiÄ, Blaschke products in Lipschitz spaces, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 3, 689â705. MR 2546639, DOI 10.1017/S001309150700065X
- Javad Mashreghi, Derivatives of inner functions, Fields Institute Monographs, vol. 31, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013. MR 2986324, DOI 10.1007/978-1-4614-5611-7
- Miodrag MateljeviÄ and Miroslav PavloviÄ, On the integral means of derivatives of the atomic function, Proc. Amer. Math. Soc. 86 (1982), no. 3, 455â458. MR 671214, DOI 10.1090/S0002-9939-1982-0671214-X
- Miroslav PavloviÄ, Introduction to function spaces on the disk, Posebna Izdanja [Special Editions], vol. 20, MatematiÄki Institut SANU, Belgrade, 2004. MR 2109650
- JosĂ© Ăngel PelĂĄez and Jouni RĂ€ttyĂ€, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann. 362 (2015), no. 1-2, 205â239. MR 3343875, DOI 10.1007/s00208-014-1108-5
- Fernando PĂ©rez-GonzĂĄlez and Jouni RĂ€ttyĂ€, Derivatives of inner functions in weighted Bergman spaces and the Schwarz-Pick lemma, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2155â2166. MR 3611328, DOI 10.1090/proc/13384
- F. Pérez-Gonzålez, J. RÀttyÀ, and A. Reijonen, Derivatives of inner functions in Bergman spaces induced by doubling weights, Ann. Acad. Sci. Fenn. Math. 42 (2017), 735-753.
Bibliographic Information
- Atte Reijonen
- Affiliation: University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
- MR Author ID: 1125393
- Email: atte.reijonen@uef.fi
- Received by editor(s): November 25, 2016
- Received by editor(s) in revised form: April 25, 2017
- Published electronically: October 6, 2017
- Additional Notes: This research was supported in part by Academy of Finland project no. 268009, JSPS Postdoctoral Fellowship for North American and European Researchers, and North Karelia Regional Fund of Finnish Cultural Foundation.
- Communicated by: Stephan Ramon Garcia
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 1173-1180
- MSC (2010): Primary 30J10; Secondary 30H20
- DOI: https://doi.org/10.1090/proc/13791
- MathSciNet review: 3750229