## A new look at Bernoulli’s inequality

HTML articles powered by AMS MathViewer

- by Rui A. C. Ferreira PDF
- Proc. Amer. Math. Soc.
**146**(2018), 1123-1129 Request permission

Addendum: Proc. Amer. Math. Soc.

**151**(2023), 85-86.

## Abstract:

In this work, a generalization of the well-known Bernoulli inequality is obtained by using the theory of discrete fractional calculus. As far as we know our approach is novel.## References

- Ricardo Alfaro, Lixing Han, and Kenneth Schilling,
*A very elementary proof of Bernoulli’s inequality*, College Math. J.**46**(2015), no. 2, 136–137. MR**3361760**, DOI 10.4169/college.math.j.46.2.136 - Ferhan M. Atici and Paul W. Eloe,
*Initial value problems in discrete fractional calculus*, Proc. Amer. Math. Soc.**137**(2009), no. 3, 981–989. MR**2457438**, DOI 10.1090/S0002-9939-08-09626-3 - Rui A. C. Ferreira,
*A discrete fractional Gronwall inequality*, Proc. Amer. Math. Soc.**140**(2012), no. 5, 1605–1612. MR**2869144**, DOI 10.1090/S0002-9939-2012-11533-3 - Christopher Goodrich and Allan C. Peterson,
*Discrete fractional calculus*, Springer, Cham, 2015. MR**3445243**, DOI 10.1007/978-3-319-25562-0 - Michael Holm,
*Sum and difference compositions in discrete fractional calculus*, Cubo**13**(2011), no. 3, 153–184 (English, with English and Spanish summaries). MR**2895482**, DOI 10.4067/s0719-06462011000300009 - Baoguo Jia, Lynn Erbe, and Allan Peterson,
*Comparison theorems and asymptotic behavior of solutions of discrete fractional equations*, Electron. J. Qual. Theory Differ. Equ. , posted on (2015), Paper No. 89, 18. MR**3434219**, DOI 10.14232/ejqtde.2015.1.89 - Riku Klén, Vesna Manojlović, Slavko Simić, and Matti Vuorinen,
*Bernoulli inequality and hypergeometric functions*, Proc. Amer. Math. Soc.**142**(2014), no. 2, 559–573. MR**3133997**, DOI 10.1090/S0002-9939-2013-11781-8 - Kenneth S. Miller and Bertram Ross,
*Fractional difference calculus*, Univalent functions, fractional calculus, and their applications (K\B{o}riyama, 1988) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989, pp. 139–152. MR**1199147** - Dragoslav S. Mitrinović and Josip E. Pečarić,
*Bernoulli’s inequality*, Rend. Circ. Mat. Palermo (2)**42**(1993), no. 3, 317–337 (1994). MR**1283347**, DOI 10.1007/BF02844624 - Roger B. Nelsen,
*Proof without Words: Bernoulli’s Inequality (two proofs)*, Math. Mag.**69**(1996), no. 3, 197. MR**1573168**

## Additional Information

**Rui A. C. Ferreira**- Affiliation: Grupo Física-Matemática, Faculdade de Ciências, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
- MR Author ID: 839886
- Email: raferreira@fc.ul.pt
- Received by editor(s): January 9, 2017
- Received by editor(s) in revised form: April 13, 2017
- Published electronically: September 6, 2017
- Additional Notes: The author was supported by the “Fundação para a Ciência e a Tecnologia (FCT)” through the program “Investigador FCT” with reference IF/01345/2014.
- Communicated by: Mourad Ismail
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 1123-1129 - MSC (2010): Primary 26D15; Secondary 26A33
- DOI: https://doi.org/10.1090/proc/13798
- MathSciNet review: 3750224