Explicit formula for the solution of simultaneous Pell equations $x^2-(a^2-1)y^2=1$, $y^2-bz^2=1$
HTML articles powered by AMS MathViewer
- by Mihai Cipu
- Proc. Amer. Math. Soc. 146 (2018), 983-992
- DOI: https://doi.org/10.1090/proc/13802
- Published electronically: October 23, 2017
- PDF | Request permission
Abstract:
For $b$ an odd integer whose square-free part has at most two prime divisors, it is shown that the equations in the title have a common solution in positive integers precisely when $b$ divides $4a^2-1$ and the quotient is a perfect square. The proof provides an explicit formula for the common solution, known to be unique. Similar results are obtained assuming the square-free part of $b$ is even or has three prime divisors.References
- Xiaochuan Ai, Jianhua Chen, Silan Zhang, and Hao Hu, Complete solutions of the simultaneous Pell equations $x^2-24y^2=1$ and $y^2-pz^2=1$, J. Number Theory 147 (2015), 103–108. MR 3276317, DOI 10.1016/j.jnt.2014.07.009
- S. Akhtari, A. Togbé, and P. G. Walsh, Addendum on the equation $aX^4-bY^2=2$ [MR2388048], Acta Arith. 137 (2009), no. 3, 199–202. MR 2496459, DOI 10.4064/aa137-3-1
- Michael A. Bennett and Ákos Pintér, Intersections of recurrence sequences, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2347–2353. MR 3326017, DOI 10.1090/S0002-9939-2015-12499-9
- Michael A. Bennett and Gary Walsh, The Diophantine equation $b^2X^4-dY^2=1$, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3481–3491. MR 1625772, DOI 10.1090/S0002-9939-99-05041-8
- Michael A. Bennett, Mihai Cipu, Maurice Mignotte, and Ryotaro Okazaki, On the number of solutions of simultaneous Pell equations. II, Acta Arith. 122 (2006), no. 4, 407–417. MR 2234424, DOI 10.4064/aa122-4-4
- Yann Bugeaud, Claude Levesque, and Michel Waldschmidt, Équations de Fermat–Pell–Mahler simultanées, Publ. Math. Debrecen 79 (2011), no. 3-4, 357–366 (French, with English and French summaries). MR 2907971, DOI 10.5486/PMD.2011.5192
- J. H. E. Cohn, The Diophantine equation $x^4-Dy^2=1$. II, Acta Arith. 78 (1997), no. 4, 401–403. MR 1438594, DOI 10.4064/aa-78-4-401-403
- Mihai Cipu, Pairs of Pell equations having at most one common solution in positive integers, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 15 (2007), no. 1, 55–66. MR 2396744
- Mihai Cipu and Maurice Mignotte, On the number of solutions to systems of Pell equations, J. Number Theory 125 (2007), no. 2, 356–392. MR 2332594, DOI 10.1016/j.jnt.2006.09.016
- Nurettin Irmak, On solutions of the simultaneous Pell equations $x^2-(a^2-1)y^2=1$ and $y^2-pz^2=1$, Period. Math. Hungar. 73 (2016), no. 1, 130–136. MR 3529822, DOI 10.1007/s10998-016-0137-0
- Pingzhi Yuan and Yuan Li, Squares in Lehmer sequences and the Diophantine equation $Ax^4-By^2=2$, Acta Arith. 139 (2009), no. 3, 275–302. MR 2545931, DOI 10.4064/aa139-3-6
- Wilhelm Ljunggren, Zur Theorie der Gleichung $x^2+1=Dy^4$, Avh. Norske Vid.-Akad. Oslo I 1942 (1942), no. 5, 27 (German). MR 16375
- Wilhelm Ljunggren, Ein Satz über die diophantische Gleichung $Ax^2-By^4=C\ (C=1,2,4)$, Tolfte Skandinaviska Matematikerkongressen, Lund, 1953, Lunds Universitets Matematiska Institution, Lund, 1954, pp. 188–194 (German). MR 0065575
- Florian Luca and P. G. Walsh, Squares in Lehmer sequences and some Diophantine applications, Acta Arith. 100 (2001), no. 1, 47–62. MR 1864625, DOI 10.4064/aa100-1-4
- D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), no. 1, 52–66. MR 1418319, DOI 10.1006/jnth.1996.0137
- Maurice Mignotte and Attila Pethő, Sur les carrés dans certaines suites de Lucas, J. Théor. Nombres Bordeaux 5 (1993), no. 2, 333–341 (French, with English and French summaries). MR 1265909, DOI 10.5802/jtnb.97
- Axel Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284–305 (German). MR 1580770, DOI 10.1515/crll.1909.135.284
- A. Togbe, P. M. Voutier, and P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$, Acta Arith. 120 (2005), no. 1, 39–58. MR 2189717, DOI 10.4064/aa120-1-3
- P. M. Voutier, A further note on “On the equation $aX^4-bY^2=2$” [MR2388048; MR2496459], Acta Arith. 137 (2009), no. 3, 203–206. MR 2496460, DOI 10.4064/aa137-3-2
- Pingzhi Yuan, On the number of solutions of $x^2-4m(m+1)y^2=y^2-bz^2=1$, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1561–1566. MR 2051114, DOI 10.1090/S0002-9939-04-07418-0
Bibliographic Information
- Mihai Cipu
- Affiliation: Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit nr. 5, P.O. Box 1-764, RO-014700 Bucharest, Romania
- MR Author ID: 224434
- Email: Mihai.Cipu@imar.ro
- Received by editor(s): February 9, 2017
- Received by editor(s) in revised form: April 13, 2017, and April 26, 2017
- Published electronically: October 23, 2017
- Communicated by: Matthew A. Papanikolas
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 983-992
- MSC (2010): Primary 11D09; Secondary 11D25, 11D45, 11B37
- DOI: https://doi.org/10.1090/proc/13802
- MathSciNet review: 3750212
Dedicated: Dedicated to Professor Maurice Mignotte on the occasion of his retirement