Reflection groups, reflection arrangements, and invariant real varieties
HTML articles powered by AMS MathViewer
- by Tobias Friedl, Cordian Riener and Raman Sanyal
- Proc. Amer. Math. Soc. 146 (2018), 1031-1045
- DOI: https://doi.org/10.1090/proc/13821
- Published electronically: October 18, 2017
- PDF | Request permission
Abstract:
Let $X$ be a nonempty real variety that is invariant under the action of a reflection group $G$. We conjecture that if $X$ is defined in terms of the first $k$ basic invariants of $G$ (ordered by degree), then $X$ meets a $k$-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most $3$, and $F_4$ and we give computational evidence for $H_4$. This is a generalization of Timofte’s degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting $X$ from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups.References
- José Acevedo and Mauricio Velasco, Test sets for nonnegativity of polynomials invariant under a finite reflection group, J. Pure Appl. Algebra 220 (2016), no. 8, 2936–2947. MR 3471197, DOI 10.1016/j.jpaa.2016.01.010
- Gérard P. Barbançon, Whitney regularity of the image of the Chevalley mapping, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 5, 895–904. MR 3569142, DOI 10.1017/S0308210515000839
- Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, 2nd ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006. MR 2248869, DOI 10.1007/3-540-33099-2
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Alexander Giventhal, Moments of random variables and the equivariant Morse lemma, Communications of the Moscow Mathematical Society (1986).
- Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486, DOI 10.1007/978-0-387-79852-3
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg, GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw. 24 (2009), no. 4-5, 761–779. MR 2554910, DOI 10.1080/10556780802699201
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Katsunori Iwasaki, Atsufumi Kenma, and Keiji Matsumoto, Polynomial invariants and harmonic functions related to exceptional regular polytopes, Experiment. Math. 11 (2002), no. 2, 313–319. MR 1959272, DOI 10.1080/10586458.2002.10504695
- M. L. Mehta, Basic sets of invariant polynomials for finite reflection groups, Comm. Algebra 16 (1988), no. 5, 1083–1098. MR 926338, DOI 10.1080/00927878808823619
- Claudio Procesi and Gerald Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), no. 3, 539–554. MR 807071, DOI 10.1007/BF01388587
- Cordian Riener, On the degree and half-degree principle for symmetric polynomials, J. Pure Appl. Algebra 216 (2012), no. 4, 850–856. MR 2864859, DOI 10.1016/j.jpaa.2011.08.012
- Cordian Riener, Symmetric semi-algebraic sets and non-negativity of symmetric polynomials, J. Pure Appl. Algebra 220 (2016), no. 8, 2809–2815. MR 3471187, DOI 10.1016/j.jpaa.2015.12.010
- Robert Steinberg, Invariants of finite reflection groups, Canadian J. Math. 12 (1960), 616–618. MR 117285, DOI 10.4153/CJM-1960-055-3
- Vlad Timofte, On the positivity of symmetric polynomial functions. I. General results, J. Math. Anal. Appl. 284 (2003), no. 1, 174–190. MR 1996126, DOI 10.1016/S0022-247X(03)00301-9
Bibliographic Information
- Tobias Friedl
- Affiliation: Fachbereich Mathematik und Informatik, Freie Universität Berlin, 14195 Berlin, Germany
- Email: tfriedl@zedat.fu-berlin.de
- Cordian Riener
- Affiliation: Aalto Science Institute, P.O. Box 11000, FI-00076 Aalto, Finland
- MR Author ID: 816514
- Email: cordian.riener@aalto.fi
- Raman Sanyal
- Affiliation: Institut für Mathematik, Goethe-Universität Frankfurt, 60325 Frankfurt, Germany
- MR Author ID: 856938
- Email: sanyal@math.uni-frankfurt.de
- Received by editor(s): November 14, 2016
- Received by editor(s) in revised form: May 11, 2017
- Published electronically: October 18, 2017
- Additional Notes: The first and third authors were supported by the DFG-Collaborative Research Center, TRR 109 “Discretization in Geometry and Dynamics”. The first author received additional funding from a scholarship of the Dahlem Research School at Freie Universität Berlin.
- Communicated by: Patricia Hersh
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 1031-1045
- MSC (2010): Primary 14P05, 14P10, 20F55
- DOI: https://doi.org/10.1090/proc/13821
- MathSciNet review: 3750216