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RHOMBIC TILINGS AND BOTT–SAMELSON VARIETIES

LAURA ESCOBAR, OLIVER PECHENIK, BRIDGET EILEEN TENNER,
AND ALEXANDER YONG

(Communicated by Patricia Hersh)

Abstract. S. Elnitsky (1997) gave an elegant bijection between rhombic til-
ings of 2n-gons and commutation classes of reduced words in the symmetric
group on n letters. P. Magyar (1998) found an important construction of the
Bott–Samelson varieties introduced by H. C. Hansen (1973) and M. Demazure
(1974). We explain a natural connection between S. Elnitsky’s and P. Magyar’s
results. This suggests using tilings to encapsulate Bott–Samelson data (in type
A). It also indicates a geometric perspective on S. Elnitsky’s bijection. We also
extend this construction by assigning desingularizations of Schubert varieties
to the zonotopal tilings considered by B. Tenner (2006).

1. Introduction

LetX = Flags(Cn) be the variety of complete flags C0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂
Cn. The group GLn(C) acts on the varietyX by change of basis, as does its subgroup
B of invertible upper triangular matrices and its maximal torus T of invertible diag-
onal matrices. The T-fixed points are in bijection with permutations w in the sym-

metric group Sn: they are the flags F
(w)
• defined by F

(w)
k = 〈�ew(1), �ew(2), . . . , �ew(k)〉,

where �ei is the i-th standard basis vector. The Schubert variety Xw is the B-orbit

closure of F
(w)
• .

There is longstanding interest in singularities of Schubert varieties; see, for exam-
ple, the text by S. Billey–V. Lakshmibai [BL00]. Famously, H. C. Hansen [Han73]
and M. Demazure [Dem74] independently presented (in all Lie types) resolutions
of singularities BS(i1,i2,...,i�(w)) of Xw, one for each reduced word si1si2 · · · si�(w)

of
w. M. Demazure called these resolutions Bott–Samelson varieties in reference
to a related construction of R. Bott–H. Samelson [BS55]. In more recent work,
P. Magyar [Mag98] found an important description of Bott–Samelson varieties.

We propose a canonical connection between P. Magyar’s work and the rhombic
tilings of S. Elnitsky [Eln97]. P. Magyar [Mag98, §1.3] describes a Bott–Samelson
variety as a subvariety of a product of Grassmannians determined by some incidence
relations among the vector spaces. Our description in terms of rhombic tilings gives
an alternate description of the points in this variety. In this way, tilings graphically
encapsulate Bott–Samelson data.
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Other ways to present Bott–Samelsons via combinatorial diagrams have been
previously described, such as X. Viennot’s heaps [Vie89]; see also N. Perrin’s [Per07]
and B. Jones–A. Woo’s [JW13]. In addition, R. Vakil [Vak06] introduces quilts to
describe particular Bott–Samelson resolutions of certain Schubert varieties; these
quilts can be seen as deformations of certain Elnitsky tilings. Our connection to
the work of Elnitsky however is new and leads to natural generalizations.
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Figure 1. The rhombic tiling picture of Bott–Samelson varieties,
for the polygon E(7456312)

In order to state the main result of this work, we must introduce the primary
objects and notation. We do this briefly, for now, postponing a more thorough
treatment to Section 2.

Given a permutation w ∈ Sn, the Elnitsky 2n-gon E(w) has sides labeled, in
order, by 1, 2, . . . , n, w(n), w(n− 1), . . . , w(1), in which the first n sides form half of
a regular 2n-gon, and sides with equal labels are parallel and congruent. Figure 1
shows the Elnitsky 14-gon for the permutation 7456312 ∈ S7, without edge labels,
and this example will be referenced later in this work.

Let T (w) be the set of rhombic tilings of E(w) in which the rhombi’s edges
are parallel and congruent to edges of E(w). The main result of S. Elnitsky’s
aforementioned work is that the set T (w) is in bijection with the commutation
classes of reduced words for w [Eln97, Theorem 2.2].

For a tiling T ∈ T (w), we introduce the notion of a T -flag of subspaces of Cn.
Starting with the vertex between the edges labeled 1 and w(1), label the vertices
of E(w) in clockwise order by

H0, H1, . . . , Hn, Gn−1, Gn−2, . . . , G1.

A T -flag is an assignment V of a linear subspace Vx ⊆ Cn to each vertex x in the
tiling T , subject to the following conditions:

• the dimension of Vx is the minimal path length from H0 to x along tile
edges;
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• VHi
is the span of the first i standard basis vectors of Cn; and

• for adjacent vertices x and y in T with y further from H0, we have Vx ⊂ Vy.

(In Figure 1, we have only labeled the external vertices, identifying VHi
with Ci.)

Now we define a parameter space ZT for T -flags by

ZT :=
{
V = (Vx)x∈Vert(T ) : V is a T -flag

}
⊂

∏

x∈Vert(T )

Grdim(Vx)(C
n),

where Grk(Cn) is the Grassmannian of k-dimensional linear subspaces of Cn.
Define the map π : ZT → X by forgetting all vector spaces except those associ-

ated to the vertices G1, G2, . . . , Gn−1. In our example, π maps the point depicted
in Figure 1 to the complete flag

C0 ⊂ VG1
⊂ VG2

⊂ VG3
⊂ VG4

⊂ VG5
⊂ VG6

⊂ C7.

The following theorem suggests a Schubert-geometric interpretation of tilings of
Elnitsky polygons.

Theorem 1.1. For T ∈ T (w), ZT is a Bott–Samelson variety, i.e., a desingular-
ization π : ZT → Xw. Conversely, every Bott–Samelson variety BS(i1,...,i�(w)) is
canonically isomorphic to ZT for some T ∈ T (w), where w = si1 . . . si�(w) and T
is given in an explicit manner by [Eln97, Theorem 2.2].

A feature of this construction is that it extends naturally to the more general
zonotopal tilings of the Elnitsky 2n-gon studied in [Ten06]. That is, for each such
zonotopal tiling Z, we construct in Section 4 an analogous parameter space ZZ of
Z-flags that is again a desingularization of the appropriate Schubert variety. To
the best of our knowledge, these generalized Bott–Samelson varieties have not pre-
viously appeared in the literature. They can be seen in some sense as interpolating
between Bott–Samelson resolutions.

As promised, we devote Section 2 to a discussion of the relevant results of El-
nitsky and Magyar. The reader who is already familiar with these objects may
choose to skip ahead to Section 3, where we prove Theorem 1.1. The remainder
of this paper concerns other Bott–Samelson data encoded by tilings. In Section 4,
we explain how the hexagon flips of [Eln97, Section 3] may be interpreted geomet-
rically. This naturally leads to consideration of zonotopal tilings and generalized
Bott–Samelsons. We collect some additional discussion in Section 5; in particular,
we explain how coloring rhombi of a tiling describes T-fixed points as well as a
standard stratification of a Bott–Samelson variety.

2. Background

2.1. Elnitsky’s polygon. The symmetric group Sn can be generated by the sim-
ple reflections {si : 1 ≤ i < n}, where si is the permutation transposing i and
i+1, while leaving all other elements fixed. Simple reflections satisfy the Coxeter
relations

s2i = e;(Cox.1)

sisj = sjsi, when |i− j| > 1; and(Cox.2)

sisi+1si = si+1sisi+1, when i < n− 1.(Cox.3)

Any w ∈ Sn can be written (in infinitely many ways) as a product of simple
reflections.
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The fewest simple reflections needed to represent a permutation w is the length
of w, denoted �(w). A realization of w ∈ Sn as a product of exactly �(w) simple
reflections is a reduced word for w. The collection of all reduced words for w is
denoted R(w).

Example 2.1. It is quick to see that

s1s2s3s1 = s1s2s1s3 = s2s1s2s3 = 3241 ∈ S4

and that no shorter product can produce this permutation. Thus �(3241) = 4 and

R(3241) = {s1s2s3s1, s1s2s1s3, s2s1s2s3}.
Note that although s1s2s1s3s1s1 = 3241 as well, this product has more than four
terms and so is not a reduced word for 3241.

Two reduced words for w are commutation equivalent, denoted ∼, if they can
be obtained from each other using only the second relation (Cox.2) listed above.
This notion yields an equivalence relation on the set R(w) of reduced words for w,
and we write C(w) := R(w)/∼ for the set of commutation classes defined by
this equivalence.

Example 2.2. Because s3s1 = s1s3, we have

C(3241) =
{
{s1s2s3s1, s1s2s1s3}, {s2s1s2s3}

}
.

In [Eln97, Theorem 2.2], Elnitsky gave a bijection between the commutation
classes C(w) of reduced words for any w ∈ Sn and the rhombic tilings of a particular
2n-gon E(w). As described in Section 1, the Elnitsky 2n-gon E(w) is a polygon
with sides labeled, in order, by 1, 2, . . . , n, w(n), w(n − 1), . . . , w(1). The first half
of these labels form half of a regular 2n-gon, and the remaining sides are oriented
so that sides with the same label are parallel and congruent. The set T (w) consists
of the rhombic tilings of E(w) in which all internal edges are also parallel and
congruent to edges of E(w). It is not hard to see that each T ∈ T (w) consists of
exactly �(w) rhombi.

The specific orientation of E(w) does not matter. In fact, one could allow the first
n edges to form half of any convex 2n-gon, regardless of angles and side lengths, so
long as edges with the same labels are always parallel and congruent, and interior
edges in any rhombic tiling are also parallel and congruent to the edges of E(w).

In this paper, we will orient our polygons so that the “first” edge, labeled 1,
is horizontal and at the bottom of the picture, and the “next” edges are labeled
in clockwise order. (Note that this is a reflection of the orientation depicted in
[Eln97].) We will refer to this particular ordering of the edges, where the edges
labeled 1, 2, . . ., n are the first n edges, in the proof of Theorem 2.4. The vertex
between the edges labeled by 1 and w(1) (that is, the node at the counterclockwise
end of the first edge) will be called the source.

Example 2.3. The Elnitsky 8-gon E(3241) appears in Figure 2(a), and the two
elements of T (3241) appear in Figure 2(b). Note that, just as |C(3241)| = 2, we
have |T (3241)| = 2 as well.

We now state the main result of Elnitsky’s work. In later discussions, it will be
helpful to understand his bijection between tilings and commutation classes, so we
briefly present his bijection here. Details of this argument can be found in [Eln97].
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Figure 2. The Elnitsky 8-gon for 3241 ∈ S4, and its two rhombic
tilings. In each figure, the source has been marked with a black
dot. For clarity, we use a square to mark the vertex that is halfway
around the 8-gon from the source.

Theorem 2.4 ([Eln97, Theorem 2.2]). For any permutation w, there is a bijection
between the rhombic tilings T (w) and the reduced word commutation classes C(w).

Proof. Fix w ∈ Sn.
Consider a tiling T ∈ T (w) in which the edges of T that coincide with edges

of E(w) inherit the labels of those edges, and we label the interior edges of T so
that parallel edges have the same labels. Let B0 be the base boundary of E(w),
formed by the first n edges of the polygon. Pick any rhombus R1 of T that shares
two edges with B0. Set i1 := d1+1, where d1 is the distance from the source to R1,
i.e., the least number of edges between the source and a vertex of R1. Remove R1

and define a new boundary, B1, from B0 by using the other two edges of R1 instead.
Now repeat this process: pick any rhombus R2 that shares two edges with B1; set
i2 := d2 + 1, where d2 is the minimum distance from the source to R2; remove R2

and form a new boundary B2. Iterating this process an additional �(w) − 2 times
produces (i1, i2, . . . , i�(w)), for which si1si2 · · · si�(w)

represents a commutation class
of reduced words for w.

For the other direction of the bijection, consider i = (i1, i2, . . .) representing a
commutation class for w (that is, si1si2 · · · is a reduced word for w). From this, we
construct an ordered tiling of E(w), as follows. For k ≥ 1, set w(k) := si1si2 · · · sik .
For 1 ≤ k ≤ �(w), the values w(k)(ik) and w(k)(ik + 1) label adjacent edges of the
boundary Bk−1. Place a rhombus, Rk, so that two of its edges coincide with the
edges labeled w(k)(ik) and w(k)(ik + 1) in Bk−1, and define the new boundary Bk

from Bk−1 by using the other two edges of Rk. �
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The procedure in one direction of Elnitsky’s bijection is, perhaps, best under-
stood through a large example. After this, we will return to our smaller example,
the permutation 3241 ∈ S4.

Example 2.5. Consider the tiling T ∈ T (7456312) depicted in Figure 1. One way
to select the rhombi {R1, R2, . . .} described in the proof of Theorem 1.1 is shown
in Figure 3, where we have recorded only the subscript k of the rhombus Rk. The
labeling in this figure represents the commutation class of the reduced word

s3s4s2s5s6s5s3s4s3s2s1s5s2s3s6s4s5

for the permutation 7456312. Any other such labeling of these tiles would produce
a different, but commutation equivalent, reduced word. For example, the labeling
obtained by swapping the selections for R14 and R15, both of which share two
edges with the boundary B15, as indicated in Figure 3, produces the commutation-
equivalent reduced word

s3s4s2s5s6s5s3s4s3s2s1s5s2s6s3s4s5.
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3
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6 12

14
9
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13
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16

17
15

Figure 3. A labeling of the rhombi in an element
of T (7456312), corresponding to the reduced word
s3s4s2s5s6s5s3s4s3s2s1s5s2s3s6s4s5 for the permutation 7456312.
The boundary B15 is indicated by thick line segments.

We conclude this section with a demonstration of Elnitsky’s correspondence be-
tween rhombic tilings and commutation classes of reduced words.

Example 2.6. The correspondence between rhombic tilings T (3241) and commu-
tation classes C(3241) is depicted in Figure 4.
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1

� {s2s1s2s3}

1

� {s1s2s3s1, s1s2s1s3}

Figure 4. Elnitsky’s bijection between rhombic tilings and com-
mutations classes, for the permutation 3241 ∈ S4.

2.2. P. Magyar’s description of the Bott–Samelson desingularization. Let
Flags(Cn, j) denote the variety of partial flags consisting of sequences of subspaces
C0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fj−1 ⊂ Fj+1 ⊂ · · · ⊂ Fn−1 ⊂ Cn such that dim(Fi) = i. Let
pj : Flags(Cn) → Flags(Cn, j) denote the projection

pj
(
C0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Cn

)

=
(
C0 ⊂ F1 ⊂ · · · ⊂ Fj−1 ⊂ Fj+1 ⊂ · · · ⊂ Fn−1 ⊂ Cn

)
.

The fiber product of two complete flag varieties with respect to Flags(Cn, j) is

Flags(Cn)×Flags(Cn,j) Flags(C
n)

= {(F 1
• , F

2
• ) ∈ Flags(Cn)× Flags(Cn) | pj(F 1

• ) = pj(F
2
• )},

(1)

i.e. it consists of pairs of complete flags such that F 2
• agrees with F 1

• everywhere
except possibly on the j-th subspace. P. Magyar [Mag98, Theorem 1] proves that
the Bott–Samelson variety of i = (i1, i2, . . . , im) is isomorphic as a B-variety to the
fiber product

(2) BSi = F
(id)
• ×Flags(Cn,i1) Flags(C

n)×Flags(Cn,i2) · · · ×Flags(Cn,im) Flags(C
n).

This is the definition of a Bott–Samelson variety we use in this paper. Let i be a
reduced word for w. It follows from P. Magyar’s isomorphism that the map

πi : BSi → Flags(Cn)

(F
(id)
• , F 1

• , . . . , F
�(w)
• ) �→ F

�(w)
•

is a desingularization of the Schubert variety Xw.

3. Proof of Theorem 1.1

We now show that ZT set-theoretically describes the points of BS(i1,i2,...,i�(w)).
P. Magyar [Mag98, Theorem 1] describes the points in BS(i1,i2,...,i�(w)) as lists
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(F 0
• , . . . , F

�(w)
• ) of �(w)+1 flags where F 0

• is the base flag, and such that F k
• agrees

with F k−1
• everywhere except possibly on the ik-th subspace. Such a list of flags

transparently corresponds in a one-to-one fashion to a point in ZT :

• Given a T -flag (Vx)x∈Vert(T ) let F 0
• be the base flag which is on the base

boundary B0 and, in general, F k
• be the flag (Vx)x∈Bk

. This list of flags is

in BS(i1,i2,...,i�(w)).
• Let (F 0

• , . . . , F
�(w)
• ) be a list of flags in BS(i1,i2,...,i�(w)). Given a vertex x ∈

B0, let Vx = F 0
d , where d is the distance from x to H0. For k = 1, . . . , �(w),

given a vertex x ∈ Bk \ Bk−1 let Vx = F k
d , where d is the distance from x

to H0. Then (Vx)x∈Vert(T ) is a point in ZT .

Suppose that j = (j1, j2, . . . ) is commutation equivalent to i = (i1, i2, . . . ). It is
well known to experts that BSi and BSj are isomorphic varieties, but we include a
proof for completeness. It suffices to prove this when j = (i1, . . . , ik+1, ik, . . . , i�(w))
differs from i only in positions k and k + 1. The general result then follows by

induction. Now, (F 0
• , . . . , F

�(w)
• ) is equivalent to a list of subspaces (V1, V2, . . .)

satisfying:

• dim(Vk) = ik;
• Ci1−1 ⊂ V1 ⊂ Ci1+1; that is, V1 is contained in the (i1 + 1)-dimensional
subspace of F 0

• and contains the (i1 − 1)-dimensional subspace of F 0
• ;

• V2 is contained in the (i2+1)-dimensional subspace of F 1
• and contains the

(i2 − 1)-dimensional subspace of F 1
• ; and so on.

Since |ik+1− ik| > 1, the (ik +1)-, (ik − 1)-, (ik+1+1)-, and (ik+1− 1)-dimensional
subspaces of F k

• are precisely the subspaces of F k−1
• with those dimensions. So if a

generic element of BSi is (V1, V2, . . .), then a generic element of BSj is (V1, V2, . . . ,
Vk+1, Vk, . . .). That is, the isomorphism by switching factors,

(3) τk : Gri1(C
n)× · · · × Grik(C

n)× Grik+1
(Cn)× · · ·

→ Gri1(C
n)× · · · × Grik+1

(Cn)× Grik(C
n)× · · · ,

restricts to a canonical isomorphism from BS(i1,i2,...) to BS(i1,...,ik+1,ik,...). In other
words, T (w) indexes Bott–Samelson varieties up to commutation equivalence.

Given i = (i1, i2, . . .) representing a commutation class for w, the inverse map to
S. Elnitsky’s bijection constructs an ordered tiling T of E(w). For this T , we have
that ZT

∼= BSi, as desired. (The incidence relations that we obtain for the vector
spaces (Vx)x∈Vert(T ) are equivalent to those in P. Magyar [Mag98, §1.3].) �

4. Flips and zonotopal tilings

4.1. Flips. Any pair of rhombic tilings of E(w) is connected by a sequence of
hexagon “flips” [Eln97, Section 3]. The effect of a single flip is depicted in Fig-
ure 5.

This flip has a geometric interpretation. Let T, T ′ ∈ T (w) be two rhombic
tilings that differ by a single flip. Let TH be the tiling of E(w) obtained from T
(or, equivalently, from T ′) by erasing the three internal edges by which T and T ′

differ and placing a hexagonal tile in the flip location. As before, associate vector
spaces Vx to each vertex x in TH , where dim(Vx) equals the distance from x to
the source H0. The resulting space ZTH

is similar to a Bott–Samelson variety:
instead of being �(w)-fold iterated CP1-bundles over the base flag, we replace three
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←→

Figure 5. Two elements of T (7456312), related by a hexagon flip.

of these CP1-bundles (corresponding to either triple of rhombi in the hexagon) by
a Flags(C3)-bundle. (We describe this variety in more detail below.) We then have

ZT ZT ′

ZTH

fT fT ′

where the two maps are the projections determined by forgetting the vector space
attached to the internal vertex of the hexagon.

4.2. Zonotopal tilings. The tiling TH described above is a special case of the
“zonotopal” tilings of Elnitsky polygons, which were studied by the third author in
[Ten06]. To be precise, a 2-zonotope is the projection of a regular q-dimensional
cube onto the (2-dimensional) plane; equivalently, a 2-zonotope is a centrally sym-
metric convex polygon. A zonotopal tiling of a region is a tiling by 2-zonotopes.
Figure 6 shows a zonotopal tiling of E(87465312) using one octagon, three hexagons,
and ten rhombi.

Let Tzono(w) be the collection of zonotopal tilings of E(w), in which the tiles
(2-zonotopes) have sides of length one and edges parallel to edges of E(w). Because
rhombi are a type of 2-zonotope, we have T (w) ⊆ Tzono(w).

Given a zonotopal tiling Z ∈ Tzono(w), we can define its corresponding general-
ized Bott–Samelson variety ZZ by extending the construction from Section 1.
Define a Z-flag to be an assignment V of a linear subspace Vx ⊆ Cn to each vertex
x in the zonotopal tiling Z, subject to the conditions:

• the dimension of Vx is the minimal path length from H0 to x along tile
edges;

• VHi
is the span of the first i standard basis vectors of Cn; and

• for adjacent vertices x and y in Z with y further from H0, we have Vx ⊂ Vy.

Now ZZ is defined to be the parameter space

ZZ :=
{
V = (Vx)x∈Vert(Z) : V is a Z-flag

}
⊂

∏

x∈Vert(Z)

Grdim(Vx)(C
n).

Let T be a rhombic tiling that refines Z; ZT may be constructed as iterated
CP1-bundles over a point. In the analogous construction of ZZ , for each 2k-gon of
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Figure 6. A zonotopal tiling for the permutation 87465312

Z, we replace k CP1-bundles with a Flags(Ck)-bundle. It therefore follows that the
variety ZZ is smooth of dimension �(w). Define πZ : ZZ → Xw by forgetting all
vector spaces except those labeled by the vertices G1, G2, . . . , Gn−1.

Theorem 4.1. Given a zonotopal tiling Z ∈ Tzono(w), its corresponding generalized
Bott–Samelson variety ZZ together with the map πZ : ZZ → Xw is a resolution of
singularities.

Proof. Let πT : ZT → Xw be a Bott–Samelson resolution where T is any rhombic
tiling that refines Z. By [Mag98, Theorem 1], πT is birational, so let π′

T be its
rational inverse. Let f : ZT � ZZ be the projection determined by forgetting
the vector spaces attached to the internal vertices of T that are not vertices of Z.
Since f is surjective, the image of πZ is indeed Xw, and the following commutative
diagram implies that f ◦ π′

T is a rational inverse to πZ :

ZT ZZ

Xw

f

πT πZ

It follows that πZ : ZZ → Xw is also a resolution of singularities. �
There are many characteristics of these zonotopal resolutions on which further

study is warranted. For example, it would be interesting to have a characterization
of those zonotopal tilings Z that give rise to small resolutions.

The zonotopal tilings Tzono(w) of E(w) have a natural poset structure, as studied
by the third author in [Ten06]. The order relation in this poset is given by reverse
edge inclusion. Thus the rhombic tilings are the minimal elements in the poset. A
pair of rhombic tilings differs by a single hexagon flip if and only if they are covered
by a common element. Similarly, one can get a broader sense of how closely two
rhombic tilings (equivalently, two commutation classes of reduced words for w) are
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related by determining their least upper bound in this poset. Geometrically, the
relations in the poset Tzono(w) correspond to the projections ZZ � ZZ′ between
two generalized Bott–Samelsons for Xw.

By [Ten06, Theorem 6.13], the poset of zonotopal tilings of E(w) has a unique

maximal element Ẑ exactly in the case that w avoids the patterns 4231, 4312, and
3421. In this case, there is a distinguished ZẐ with a projection ZZ � ZẐ from
every other generalized Bott–Samelson. Such permutations have been enumerated
by T. Mansour [Man06].

For comparison, consider those Elnitsky polygons all of whose zonotopal tilings
contain no hexagonal tiles (equivalently, those polygons with a unique zonotopal
tiling). These correspond to 321-avoiding permutations, which are exactly those
whose reduced words contain no long braid moves [BJS93, Theorem 2.1] (see also
[Ten17, Section 3] for more general results relating pattern avoidance and reduced
words). The unique tiling in this case is a deformation of the skew shape associated
to the permutation by considering its Rothe diagram and removing empty rows and
columns. A standard filling orders the tilings in the sense of [Eln97] (and the final
paragraph of the proof of Theorem 1.1).

We now have the following result (cf. [Ele15, Remark 3.1], where this fact for
ordinary Bott–Samelsons is noted).

Proposition 4.2. Suppose that Z ∈ Tzono(w) and that the number of 2i-sided tiles
in Z is ti, for each i ≥ 1. Then the Poincaré polynomial of the cohomology ring
H�(ZZ) is

�(w)∑

k=0

dimH2k(ZZ)q
k =

∏

i≥1

[i]q!
ti ,

where [i]q := 1 + q + q2 + · · ·+ qi−1 and [i]q! := [i]q[i− 1]q · · · · [1]q.

Proof. The variety ZZ is constructed as iterated flag bundles over a point, where ti
of the fibrations are by Flags(Ci). It is a standard fact (following from the Schubert
decomposition of Flags(Ci)) that the Poincaré polynomial of H�(Flags(Ci)) is [i]q!
(indeed, [i]q! is the ordinary generating function for Si with each permutation
weighted by Coxeter length). The proposition now follows from the Leray–Hirsch
theorem (cf. [Hat02, Theorem 4D.1]). �

5. Additional discussion

One may reformulate certain results about BSi in terms of rhombic colorings;
we refer to [Esc16, Section 3.2] for background as well as further references.

Proposition 5.1. For T ∈ T (w), the T-fixed points of ZT (under the diagonal
action) are in one-to-one correspondence with bipartitions of the rhombi of T .

Before proving this proposition, we remark that the T-fixed points of the gener-
alized Bott–Samelson variety ZZ corresponding to a zonotopal tiling Z do not
correspond to bipartitions of the tiles. The Elnitsky polygon E(w0) for w0 =
[n, n − 1, . . . , 1] is a zonotope. Let Z0 be the tiling that only consists of the tile
E(w0). Then ZZ0

equals the flag variety Flags(Cn) which has n! T-fixed points.
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Figure 7. A 2-coloring corresponding to a T-fixed point of ZT .

Proof of Proposition 5.1. Consider a 2-coloring of the rhombi of T representing the
bipartition (as shown in Figure 7). There is a unique way to choose {Vx}x∈Vert(T )

such that

(1) each Vx is the span of a subset of the standard basis of Cn, and,
(2) for any rhombus, its two vector spaces of common dimension are the same

(resp., different) if the rhombus is light-colored (resp., dark-colored).

Since the T-action is diagonal, if {Vx}x∈Vert(T ) is a T-fixed point of ZT , then each
Vx must be T-fixed, i.e., each Vx must be spanned by a subset of the standard
basis {e1, . . . , en}. Using the required containment relations, we can inductively
determine Vx for each vertex of T by following an ordering of the rhombi given by
a representative of the commutation class of T . At a particular colored rhombus,
we make the two vector spaces of common dimension the same (resp., different) if
the rhombus is light-colored (resp., dark-colored):

Vc = Va ⊕ 〈eb, ec〉

= (resp., �=)Vb = Va ⊕ 〈eb〉 Vx

Va

Conversely, every T-fixed point can be indicated by such a coloring. �
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Demazure [Dem74] used the T-fixed points to prove that the image of BS(i1,i2,...)

under the Bott–Samelson map π is indeed the Schubert variety Xsi1si2 ...
. These

fixed points are also useful in the study of moment polytopes of Bott–Samelson
varieties. Bott–Samelson varieties are symplectic manifolds and the T-action is
Hamiltonian. Therefore BSi has a moment map Φ : BSi → Rn and, by [Ati82,
GS82], the image of Φ is the convex hull of the image under Φ of the T-fixed
points. This polytope is the moment polytope of BSi. In [Esc16], the first author
studied the moment polytope of the general fiber of the Bott–Samelson resolution.
Other uses of the T-fixed points include describing the equivariant cohomology of
Bott–Samelson varieties varieties, e.g., [Wil06].

These 2-colorings also correspond to a stratification of ZT by smaller Bott–
Samelsons. The unique smallest stratum corresponds to the all-light coloring,
whereas the unique largest stratum corresponds to the all-dark one.

Proposition 5.2. Given a 2-coloring C of the rhombi of T , let

S(C) :={(Vx)x∈Vert(T ) |Vx=Vy if the rhombus containing x and y is light-colored}.
The variety ZT is stratified by the S(C) for any 2-coloring C of T , and each S(C)
is a Bott–Samelson variety.

Proof. To verify that the S(C) give a stratification we must check that they are
varieties, their union equals ZT , and the intersection of two of these varieties is the
union of finitely many S(C). Let i = (i1, i2, . . .) be a reduced word corresponding to
T , as constructed in Theorem 2.4. A 2-coloring C corresponds to the subword j of i
that uses only the entries of i coming from dark-colored rhombi. It is straightforward
to check that S(C) is isomorphic to BSj, so the proposed sets are varieties. Since
the coloring Cdark with all tiles dark-colored gives the stratum S(Cdark) = ZT ,
the union of all the strata equals ZT . Finally, given two colorings C and C ′, let
C ∧C ′ be the coloring obtained by making a rhombus light-colored if the rhombus
is light-colored in either C or C ′. We then have that S(C)∩S(C ′) = S(C∧C ′). �

This stratification is used by R. Vakil (together with similar diagrams) [Vak06],
for example, to study certain degenerations of Richardson varieties in Grassman-
nians.

In [Eln97], the author extends his main construction to the other Weyl groups of
classical Lie type. We suspect that these generalized tilings can be used to describe
the Bott–Samelsons for Schubert varieties in parabolic quotients of the associated
Lie groups. It seems interesting to us, and potentially useful, to determine if this
is the case.
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