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ON TWO CHAIN MODELS FOR THE GRAVITY OPERAD

CLÉMENT DUPONT AND GEOFFROY HOREL

(Communicated by Michael A. Mandell)

Abstract. In this paper we recall the construction of two chain level lifts
of the gravity operad, one due to Getzler–Kapranov and one due to Wester-
land. We prove that these two operads are formal and that they indeed have
isomorphic homology.

1. Introduction

The gravity operad is an operad which was introduced by Getzler in [Get94,
Get95]. It is an operad in graded vector spaces over the rationals whose arity n
space is given by H∗−1(M0,n+1), where M0,n+1 is the moduli space of genus zero
Riemann surfaces with n+1 marked points.1 Getzler gives two seemingly different
descriptions of the operadic structure.

On the one hand, there exists an injective transfer map H∗−1(M0,n+1) →
H∗(D(n)), where D(n) denotes the arity n space of the operad of little 2-disks.
This comes from the fact the M0,n+1 is homotopy equivalent to the quotient of
D(n) by the action of the circle S1. Getzler observes that the collection of sub-
spaces H∗−1(M0,n+1) is stable under operadic composition and thus inherits an
operad structure from the operad of little 2-disks.

On the other hand, one can consider the Deligne–Mumford compactification
M0,n+1 of M0,n+1. The complement M0,n+1 − M0,n+1 is a normal crossing di-

visor which induces a stratification of M0,n+1 indexed by trees. The strata of
codimension 1 are isomorphic to products M0,r+1 × M0,s+1 with r + s = n + 1,
and we thus get residue morphisms

H∗(M0,n+1) → H∗−1(M0,r+1 ×M0,s+1)

which, after dualization, can be shown to give an operad structure on the collection
of graded vector spaces H∗−1(M0,n+1).

Each of these two definitions of the gravity operad can be lifted to the chain
level. For the first definition, this was done by Westerland in [Wes08]. We can
consider the operad in chain complexes C∗(D) and observe that it supports an
action of the group S1. Taking homotopy fixed points in a suitably rigid way,

we can construct an operad C∗(D)hS
1

equipped with a map C∗(D)hS
1 → C∗(D).

Moreover, Westerland observes that the homology of C∗(D)hS
1

together with its
map to the homology of C∗(D) exactly recovers the definition of the gravity operad
as a suboperad of H∗(D).
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The second definition can also be lifted to the level of chains, as observed by
Getzler and Kapranov [GK98]. Indeed, using differential forms with logarithmic
singularities, the residue map can be modeled at the chain level. This allows one to
construct a cooperad in the category of nuclear Fréchet spaces given in arity n by
the cochain complex E∗−1(M0,n+1, log ∂M0,n+1). Note that we have to work with
a completed tensor product for the Künneth formula to hold at the chain level.

The goal of the present paper is to explain how these models of the gravity
operad and their homology are related. Firstly, we prove that the two chain models
for the gravity operad are formal, i.e., that they are quasi-isomorphic to their
homology as operads. Secondly, we prove that the two models have isomorphic
homology. These results combined show that all four operads contain essentially
the same homotopical information. The second result is nothing but the equivalence
of the two definitions of the gravity operad, whose proof we could not find in the
literature, although it has been implicitly used in many references. On the one
hand, the description as a suboperad of H∗(D) leads [Get94] to give a presentation
of the gravity operad; on the other hand, the description in terms of residue maps
shows [Get95] that the gravity operad is Koszul dual to the hypercommutative
operad—the operad structure on the collection of graded vector spaces H∗(M0,n+1)
coming from gluing curves along marked points. For this reason, we believe that
this comparison between the two definitions, although unsurprising to experts, is a
useful addition to the literature.

Let us say a few words about the proofs of the two formality results. For the
Westerland model, we use a criterion due to Sullivan in the context of differential
graded algebras. The idea is to lift a grading automorphism of the homology of our
operad (i.e., an automorphism that acts in homological degree n by multiplication
by αn for some unit α of infinite order) to an automorphism at the level of chains
that can then be used to produce a splitting of the chain operad. In order to do this
we need a large supply of automorphisms of our operad. In fact, we construct an
action of the Q-points of the Grothendieck–Teichmüller group GT on the Wester-
land model. Using the surjectivity of the cyclotomic character map GT(Q) → Q×,
we obtain the desired lifting. For the Getzler–Kapranov model in terms of differ-
ential forms with logarithmic singularities, we recall the folklore proof of formality,
which uses Deligne’s mixed Hodge theory. The purity of the mixed Hodge structure
on the cohomology of the spaces M0,n+1 implies that the subcomplex of holomor-
phic differential forms has zero differential and still computes the cohomology of
M0,n+1. Therefore, we get an explicit suboperad with zero differential and which
is such that the inclusion is a quasi-isomorphism.

Notations and conventions. An n-tree is a reduced rooted tree with leaves la-
beled by {1, . . . , n}. For X a topological space, we denote by H∗(X) (resp., H∗(X))
the homology (resp., cohomology) groups of X with coefficients in Q. By conven-
tion, our operads do not have arity 0 operations.

2. The Westerland model

2.1. The spectral model. Let D be the little 2-disks operad. This is an operad
in the category of topological spaces. The space D(n) has the Σn-equivariant
homotopy type of the space of ordered configurations of n points in the plane. The
operad D possesses an action of the circle. There is a weak equivalence D(n)/S1 �
M0,n+1 for n ≥ 2, where M0,n+1 is the moduli space of genus 0 curves with n+ 1
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marked points. Note that, since the action of S1 on the space D(n) is free for n ≥ 2,
this quotient really is a homotopy quotient.

Proposition 2.1. Let X be a spectrum with an S1-action that is induced (i.e.,
weakly equivalent as an S1-spectrum to Y ∧Σ∞

+ S1 for some spectrum Y ). Then the
norm map

ΣXhS1 → XhS1

is a weak equivalence.

Proof. This is classical. See for instance [Kle01, Theorem D]. �

It is easy to verify that Σ∞
+ D(n) is induced for n ≥ 2. In fact this is already

true at the space level, since the space D(n) is weakly equivalent to S1 ×M0,n+1.
It follows that there is an equivalence

ΣΣ∞
+ M0,n+1 � ΣΣ∞

+ D(n)hS1
∼−→ (Σ∞

+ D(n))hS
1

.

Since the functor X �→ XhS1

can be made lax monoidal, the spectra (Σ∞
+ D(n))hS

1

form an operad in spectra. Let HQ denote the rational Eilenberg–MacLane spec-
trum.

Definition 2.2. The collection of spectra HQ ∧ (Σ∞
+ D(n))hS

1

form an operad in
HQ-modules that we call the Westerland spectral model of the gravity operad.

By the above discussion, this operad has the homotopy type ofHQ∧ΣΣ∞
+ M0,n+1

in arity ≥ 2 and is given by HQ in arity 1. Note that since the spectrum HQ ∧
Σ∞

+ D(n) is also S1-induced, there is a weak equivalence

(HQ ∧ ΣΣ∞
+ D(n))hS1 � (HQ ∧ Σ∞

+ D(n))hS
1

for n ≥ 2. This immediately implies the following proposition.

Proposition 2.3. There is a weak equivalence of operads

HQ ∧ ((Σ∞
+ D)hS

1

)
∼−→ (HQ ∧ (Σ∞

+ D))hS
1

.

2.2. The chain complex model. The homotopy theory of HQ-modules is natu-
rally equivalent to that of chain complexes over Q as was established by Schwede
and Shipley (see [SS03, Theorem 5.1.6]). This equivalence can be made symmetric
monoidal as proved in [Lur16, Theorem 7.1.2.13]. Therefore, the Westerland spec-

tral model HQ ∧ ((Σ∞
+ D)hS

1

) of the gravity operad corresponds to an operad in
chain complexes which is uniquely defined up to quasi-isomorphism. By Proposi-

tion 2.3 this operad in chain complexes should be defined as C∗(D)hS
1

, where C∗ is
our notation for the singular chain complex with rational coefficients. The only dif-
ficulty is to make sense of this homotopy fixed point construction in a rigid enough

way so that C∗(D)hS
1

is indeed an operad. A chain complex with an S1-action
can be defined as a chain complex with an action of the commutative differential
graded algebra (cgda) C∗(S

1). The singular chains of any topological space with
an S1-action will possess this structure. The problem is that the category of chain
complexes with such an action does not form a symmetric monoidal category be-
cause the cdga C∗(S

1) is not a Hopf algebra on the nose. One way to get around
this difficulty is to use the theory of ∞-categories. In order to make this note more
self-contained, we have chosen a different and more concrete route using simplicial
Q-vector spaces.
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We denote by N the functor that assigns to a simplicial Q-vector space its
normalized chain complex. ForX a simplicial set, we denote by S•(X) the simplicial
vector space whose n-simplices is the free Q-vector space with basis Xn. If X is a
topological space, we denote by S•(X) the simplicial Q-vector space S•(Sing(X)).
The functor S• is strong monoidal. It follows that S•(S

1) is a simplicial Hopf
algebra and that moreover the functor S• induces a symmetric monoidal functor
from the category of spaces with an S1-action to the category of simplicial modules
over S•(S

1).
Given two simplicial vector spaces X and Y , we denote by Hom(X,Y ) the sim-

plicial vector space whose degree n simplices are the linear maps X⊗S•(Δ[n]) → Y ,
where Δ[n] is the simplicial set represented by [n].

Construction 2.4. Let A be a simplicial algebra. Let M and N be two simplicial
left modules over A. We can form the cosimplicial simplicial module given by

[n] �→ Hom(A⊗n ⊗M,N).

Let us explain how the two cofaces Hom(M,N) → Hom(A⊗M,N) and the code-
generacy Hom(A⊗M,N) → Hom(M,N) are defined; the higher cofaces and code-
generacies will be clear from that. The first coface is the map Hom(M,N) →
Hom(A ⊗ M,N) induced by the action A ⊗ M → M ; the second coface is the
composition

Hom(M,N)
A⊗−−−−→ Hom(A⊗M,A⊗N) → Hom(A⊗M,N),

where the second map is induced by the action of A on N . Finally the codegeneracy
Hom(A⊗M,N) → Hom(M,N) is given by precomposition with the map

idM ⊗ u : M → A⊗M,

where u : Q → A is the unit of A.
We define RHomA(M,N) to be the totalization of this cosimplicial simplicial

vector space. This is a simplicial vector space. Note that, as suggested by the
notation, the functor RHomA(−,−) is indeed a right derived functor of HomA(−,−)
in the sense that it preserves weak equivalences in both variables and coincides with
HomA(−,−) when the source is a free A-module.

Now, if M and N are two chain complexes with an action of a differential graded
algebra (dga) A, we can define a similar cosimplicial object in chain complexes

[n] �→ Hom(A⊗n ⊗M,N).

Its totalization (i.e., the total complex of the associated double complex) is denoted
RHomA(M,N).

Construction 2.5. Now, we assume that H is a cocommutative simplicial Hopf
algebra. The category of simplicial H-modules becomes a symmetric monoidal
category under the levelwise tensor product of Q-vector spaces. Moreover, the
augmentation H → Q makes Q into a module over H. It is then easy to verify that
the construction M �→ RHomH(Q,M) is a lax symmetric monoidal functor of the
variable M . When G is a topological monoid, the simplicial vector space S•(G) is
a cocommutative Hopf algebra. For M a module over S•(G), we use the notation
MhG instead of RHomS•(G)(Q,M).

Applying this construction to the operad S•(D), we obtain an operad S•(D)hS
1

in the category of simplicial vector spaces.
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Definition 2.6. The Westerland chain model G ravW of the gravity operad is the

operad in chain complexes NS•(D)hS
1

. Its homology is denoted by GravW .

By construction, this operad comes equipped with a map

ι : G ravW → C∗(D) := NS•(D).

We now study the effect of this map on homology. As the homology of a chain
complex with an action of C∗(S

1), the homology H∗(D(n)) has an action of the
exterior algebra H∗(S

1) ∼= Q[Δ]/(Δ2) =: Λ[Δ], where Δ has degree 1. Equivalently,
the homology of H∗(D(n)) is equipped with a cohomological differential Δ. Our
construction of G ravW involves taking the totalization of a cosimplicial simplicial
vector space. Hence, we get a spectral sequence computing the homology of G ravW

of the form

Es,t
2 = ExtsΛ[Δ](Q, Ht(D(n))) =⇒ Ht−s(G ravW (n)).

But as explained in [Wes08, Lemma 6.2] the homology H∗(D(n)) is free over Λ[Δ].
It follows that all the higher Ext terms are zero, and we deduce that Hk(G ravW (n))
is the kernel of the operator Δ acting on Hk(D(n)), recovering the definition of the
gravity operad from [Get94].

2.3. Spectral model vs. chain model. In this subsection we outline an argu-
ment that shows that the operad G ravW is indeed a chain complex model for the

operad (HQ∧Σ∞
+ D)hS

1

introduced in the first subsection. As explained there, one
would like to construct the homotopy fixed points for the S1-action on C∗(D) in
the category of operads in chain complexes. What we have done instead is take
the homotopy fixed points of the S1-action on S•(D) in the category of operads in
simplicial vector spaces. The category of simplicial vector spaces is equivalent to
the category of non-negatively graded chain complexes by a theorem of Dold and
Kan. Moreover, we have an adjunction

i : Ch∗(Q)≥0 � Ch∗(Q) : t≥0

between non-negatively graded chain complexes and chain complexes in which the
left adjoint is the inclusion and the right adjoint sends C∗ to · · · → C2 → C1 → Z0.
Both adjoints are lax monoidal, therefore this adjunction induces an adjunction

i : OpCh∗(Q)≥0 � OpCh∗(Q) : t≥0

between the corresponding categories of operads. Since both i and t≥0 preserve
quasi-isomorphisms, we deduce that t≥0 preserves homotopy limits. It follows from

this discussion that the operad G ravW is modeling t≥0(C∗(D)hS
1

). But by Propo-

sition 2.1 and Proposition 2.3, we know that the spectra (HQ ∧ Σ∞
+ D(n))hS

1

are
connective. Using the equivalence between the homotopy theory of HQ-modules

and chain complexes, this can be translated by saying that C∗(D(n))hS
1

has ho-
mology concentrated in non-negative degrees. It follows that the map

t≥0(C∗(D)hS
1

) → C∗(D)hS
1

is aritywise a quasi-isomorphism and hence is a quasi-isomorphism of operads.



1900 CLÉMENT DUPONT AND GEOFFROY HOREL

2.4. An alternative model. We denote by GT the Grothendieck–Teichmüller
group. This is a proalgebraic group over Q that fits in a short exact sequence

1 → GT1 → GT
χ−→ Gm → 1.

The map χ : GT → Gm is called the cyclotomic character. The group GT1 is a
prounipotent group.

In this subsection, we will construct a differential graded operad G ravW
′
that

is equipped with an action of GT(Q) and that is quasi-isomorphic to Westerland’s

operad G ravW . This action will be used to prove the formality of G ravW
′
and hence

also of G ravW in the next subsection. A similar method was used by Petersen in
[Pet14] in order to prove the formality of the little 2-disks operad.

We start with the operad PaB of parenthesized braids. This is an operad in
groupoids (its definition can be found in Section 3.1 of [Tam03]). Applying the
classifying space functor B aritywise, one gets an operad BPaB in simplicial sets
that is weakly equivalent to Sing(D) by [Tam03, Section 3.2]. Let us denote by Z

the abelian group Z seen as a groupoid with a unique object. This has the structure
of a group object in groupoids. In particular it makes sense to say that a groupoid
C has an action of Z. This means that there is a morphism of groupoids Z×C → C
that satisfies the usual axioms. The operad in groupoids PaB has an action of
Z that is described explicitly in [Fre17b, III 5.2]. Applying the classifying space
functor, we get an action of BZ on BPaB. Up to homotopy, this action is nothing
but the action of S1 on the space of configurations of points in the plane.

Given a group G, its prounipotent completion is the universal prounipotent al-
gebraic group Γ over Q equipped with a map G → Γ(Q). This can be constructed
explicitly as the prounipotent group associated to the Lie algebra of primitive ele-
ments in the completed group algebra Q[G]∧. This construction has been extended
to groupoids and operads in groupoids in [Fre17a, Chapter 9]. The prounipotent
completion of PaB is denoted PaBQ. The action of Z on PaB induces an action
of Q on PaBQ (here Q denotes the one-object groupoid whose group of arrows
is Q; it is also the prounipotent completion of the groupoid Z). This implies that
BPaBQ has an action of BQ and that the operad S•(PaBQ) is an operad in sim-

plicial modules over the simplicial Hopf algebra S•(BQ). We denote by G ravW
′

the operad N(S•(BPaBQ)
hBQ) (see Construction 2.5).

The operad PaBQ has an action of the group GT(Q) (see [Fre17a, Theorem
11.1.7]). Thus we have an action of GT(Q) on BPaBQ that is moreover compatible
with the action of BQ in the sense that the action map

(2.1) BQ×BPaBQ(n) → BPaBQ(n)

is equivariant, where the left-hand side is given the diagonal action and where we
let GT(Q) act on Q through the cyclotomic character (see [Fre17b, Proposition
III.5.2.4]). This implies that the cosimplicial object that enters in the definition

of G ravW
′
has a levelwise action of GT(Q) that commutes with the cofaces and

codegeneracies and hence that the operad G ravW
′
has an action of GT(Q) which

is such that the map G ravW
′ → C∗(BPaBQ) is GT(Q)-equivariant.

Now, we want to prove that G ravW is quasi-isomorphic to G ravW
′
. This will

rely on the following general lemma about model categories.
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Lemma 2.7. Let M be a combinatorial simplicial model category. Let C be a
small simplicial category. Assume that for each object c of C, the inclusion ic :
MapC(c, c) → C is a Dwyer–Kan equivalence of simplicial categories (where a
monoid is seen as a category with one object). Let F : C → M be a simplicial
functor. Then, the objects F (c)hMap(c,c) for c ∈ C are all weakly equivalent.

Proof. Let c be an object of C. We have an inclusion ic : MapC(c, c) → C. By
hypothesis, the map ic is an equivalence of simplicial categories, therefore, the
adjunction

i∗c : MC � MMapC(c,c) : (ic)∗

is a Quillen equivalence of model categories (where both sides are given the injective
model structure) by [Lur09, Proposition A.3.3.8]. It follows that for any F in MC

the derived unit map F → (Ric)∗i
∗
cF is a weak equivalence. We can apply the

functor holimC to this weak equivalence and get a weak equivalence

holimC F → holimC(Ric)∗i
∗
cF,

and the right-hand side can be identified with holimMapC(c,c) i
∗
cF := F (c)hMapC(c,c).

Therefore, all the objects F (c)hMapC(c,c) are weakly equivalent to holimC F . �

Proposition 2.8. The operad G ravW is quasi-isomorphic to G ravW
′
.

Proof. First, the map BPaB → BPaBQ induces a weak equivalence on rational
homology. Moreover it is BZ-equivariant (where Z acts on the target through the
inclusion Z → Q). Hence it induces a weak equivalence of operads

S•(BPaB)hBZ → S•(BPaBQ)
hBZ.

The inclusion Z → Q induces a map

S•(PaBQ)
hBZ → S•(PaBQ)

hBQ

which is also a weak equivalence since the map of Hopf algebras S•(BZ) → S•(BQ)
is a weak equivalence.

Hence, it is enough to prove that S•(BPaB)hBZ is equivalent to S•(D)hS
1

as
an operad in simplicial vector spaces. In order to simplify the notation, we write
B for the operad BPaB. We may assume without loss of generality that B and
D are cofibrant-fibrant objects in simplicial operads. Thus, there exists a weak
equivalence α : B → D and a homotopy inverse β : D → B. We denote by C
the simplicial subcategory of the category of simplicial operads containing the two
objects B and D and the connected components of the map idB, idD , α, β. The
simplicial category C has the property that for any object c ∈ C, the inclusion
MapC(c, c) → C is a weak equivalence of simplicial categories. There is a simplicial
functor from C to operads in simplicial vector spaces sending B to S•(B) and D
to S•(D). Hence according to Lemma 2.7, there is a zig-zag of weak equivalences:

S•(B)hMapC(B,B) ∼←− ∗ ∼−→ S•(D)hMapC(D,D).

Finally since the inclusions BZ → MapC(B,B) and S1 → MapC(D ,D) are weak
equivalences of monoids by [Hor17, Theorem 8.5], the left-hand side of this zig-zag
is weakly equivalent to S•(B)hBZ, and the right-hand side of this zig-zag is weakly

equivalent to S•(D)hS
1

. �
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2.5. Formality. Given an operad P (or any other algebraic structure) in graded
vector spaces over Q and an element r ∈ Q×, we get an automorphism αr of P via
the formula

αr(x) := r|x|x.

Such automorphisms are called grading automorphisms. Note that we have the
formula αr ◦ αs = αrs. Hence, the operad P has an action of the group Q×.

Definition 2.9. This action of Q× on operads in graded vector spaces is called
the grading action. More generally, an action of GT(Q) on an operad P in graded
vector spaces is said to be the grading action if it is given by the composition

GT(Q)
χ−→ Q× → Aut(P),

where the second map is the grading action.

Proposition 2.10. The action of GT(Q) on H∗(G ravW ) is the grading action.

Proof. As we explained at the end of section 2.2, the map

ι(n) : G ravW (n) → C∗(D(n))

induces the inclusion ker(Δ) → H∗(D(n)) on homology groups. Since GT(Q) acts
on D(n) in a way compatible with the S1-action, the map H∗(ι(n)) is GT(Q)-
equivariant. As explained in [Pet14], the action of GT(Q) on H∗(D(n)) is the
grading action; it follows that the action on H∗(G ravW (n)) is also the grading
action. �

We can now prove the main result of this section.

Theorem 2.11. The operad G ravW is formal.

Proof. It is equivalent to prove that G ravW
′
is formal. According to [GSNPR05,

Theorem 5.2.3], it suffices to prove that a grading automorphism of H∗(G ravW
′
)

lifts to an automorphisms of G ravW
′
. This follows immediately from the surjectiv-

ity of the cyclotomic character GT(Q) → Q×. �
Remark 2.12. We conclude this section with a remark which connects this proof
of formality to the one of the next section. The group GT receives a map from
the group Gal(MT(Z)), the Galois group of the Tannakian category of mixed Tate
motives over Z (see [And04, 25.9.2.2]). By restricting along this map, the operad

G ravW
′
can be viewed as an operad in mixed Tate motives over Z. As such it has a

Hodge realization, which is an operad in the category of chain complexes in mixed
Hodge structures. In this framework, the analog of Proposition 2.10 means that the
induced mixed Hodge structure on homology is pure of weight −2k in homological
degree k (see Remark 3.3 below). Thus, our proof of formality can be reinterpreted
in that light as a “purity implies formality” type of result. We refer the reader to
[CH17, Section 7.4] for more details about this.

3. The Getzler–Kapranov model

3.1. Definition. We recall the construction of [GK98, §6.10] in the genus zero case.
Let M0,n+1 denote the moduli space of genus zero curves with n+1 marked points

and let M0,n+1 denote its Deligne–Mumford compactification. The complement

∂M0,n+1 := M0,n+1 −M0,n+1 is a simple normal crossing divisor which induces a

stratification of M0,n+1 indexed by the poset of n-trees. One associates to integers
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r, s such that r+s = n+1, and an integer i ∈ {1, . . . , r}, an n-tree t(r, s, i) with one
internal edge obtained by grafting an s-corolla on the i-th leaf of a r-corolla. Figure
1 shows the case r = 6, s = 3, i = 3. This n-tree corresponds to an irreducible
component of the divisor ∂M0,n+1, isomorphic to M0,r+1 ×M0,s+1.

1 2

3 4 5

6 7 8

Figure 1. The tree t(6, 3, 3)

We denote by

E∗(M0,n+1, log ∂M0,n+1)

the space of global smooth differential forms on M0,n+1 with logarithmic singular-

ities along ∂M0,n+1. The residue morphism along the divisor M0,r+1 × M0,s+1

indexed by the tree t(r, s, i) reads

(3.1) E∗+1(M0,n+1, log ∂M0,n+1)

→ E∗(M0,r+1 ×M0,s+1, log(∂M0,r+1 ×M0,s+1 ∪M0,r+1 × ∂M0,s+1)) .

We now view the spaces of differential forms as nuclear Fréchet spaces. Recall
[Cos11, Proposition 3.0.6] that the category of nuclear Fréchet spaces, endowed
with the completed tensor product ⊗̂, is symmetric monoidal. The right-hand side
of (3.1) is then naturally isomorphic to the tensor product

E∗(M0,r+1, log ∂M0,r+1) ⊗̂ E∗(M0,s+1, log ∂M0,s+1) .

For V a nuclear Fréchet space, its strong dual V ′ is a nuclear DF-space, and this
operation establishes an anti-equivalence of symmetric monoidal categories between
the category of nuclear Fréchet spaces and that of nuclear DF-spaces [Cos11, Propo-
sition 3.0.6]. By dualizing (3.1) and suspending we thus get morphisms

(3.2) E∗−1(M0,r+1, log ∂M0,r+1)
′ ⊗̂ E∗−1(M0,s+1, log ∂M0,s+1)

′

→ E∗−1(M0,n+1, log ∂M0,n+1)
′ .

Definition 3.1. The Getzler–Kapranov chain model G ravGK of the gravity operad
is the differential graded operad in DF-spaces whose arity n component is

G ravGK(n) := E∗−1(M0,n+1, log ∂M0,n+1)
′

and whose composition morphisms ◦i are the morphisms (3.2).

Remark 3.2. These operads have the structure of anticyclic operads [GK95, 2.10].
This point of view has the advantage of making more explicit the signs that appear
in the definition of the composition morphisms.
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Let us mention that the inclusion of E∗(M0,n+1, log ∂M0,n+1) inside the differ-
ential graded algebra of smooth differential forms onM0,n+1 is a quasi-isomorphism.
This implies that the homology of G ravGK has arity n component

H∗(G ravGK(n)) ∼= H∗−1(M0,n+1)⊗Q C .

It is a standard fact that the residue morphisms are defined on the cohomology
with rational coefficients (this follows for instance from Lemma 4.3); thus, there is

a natural rational structure on the homology of G ravGK that we denote by GravGK .
This is an operad in rational graded vector spaces whose arity n component is

GravGK(n) = H∗−1(M0,n+1) .

It is nothing but (the operadic desuspension of) the operad defined by Getzler in
[Get95, §3.4].

Remark 3.3. The Getzler–Kapranov gravity operad GravGK has a natural structure
of an operad in the category of mixed Hodge structures if one adds the right Tate
twist and sets

GravGK(n) = H∗−1(M0,n+1)⊗Q(1) .

The Tate twist Q(1) has the effect of shifting the weight filtration by −2. By
[Get95, Lemma 3.12], the mixed Hodge structure on the k-th cohomology group of
M0,n+1 is pure Tate of weight 2k, which implies that the mixed Hodge structure

on the degree k part of GravGK is pure Tate of weight −2(k− 1)− 2 = −2k. From
a more concrete point of view, the Tate twist comes from the factor 2πi in the
definition of a residue morphism.

3.2. Formality. We start with a general proposition. Let X be a smooth complex
variety and D be a simple normal crossing divisor in X. Then we have the space
E∗(X, logD) of global smooth differential forms on X with logarithmic singularities
along D, and the subspace Ω∗(X, logD) of global holomorphic differential forms on
X with logarithmic singularities. The following proposition seems to be folklore,
and is explained in, e.g., [AP17, §1.6].

Proposition 3.4.

(1) If X is projective, then every global holomorphic logarithmic differential
form is closed, i.e., the differential in Ω∗(X, logD) is zero.

(2) If, furthermore, for every k the mixed Hodge structure on Hk(X − D) is
pure of weight 2k, then the inclusion

(Ω∗(X, logD), d = 0) ↪→ (E∗(X, logD), d)

is a quasi-isomorphism of differential graded algebras.

Proof. Let us denote by E∗
X(logD) (resp., Ω∗

X(logD)) the complex of sheaves on
X of smooth (resp. holomorphic) differential forms with logarithmic sigularities
along D, whose space of global sections is E∗(X, logD) (resp. Ω∗(X, logD)). The
inclusion

(3.3) Ω∗
X(logD) ↪→ E∗

X(logD)

is a quasi-isomorphism of complexes of sheaves on X [Del71, 3.2.3 b)].
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(1) By [Del71, Corollaire 3.2.13 (ii)], the hypercohomology spectral sequence
for the stupid truncation filtration on Ω∗

X(logD) degenerates at E1. The
E1 term is Ep,q

1 = Hq(X,Ωp
X(logD)) and the differential dp,q1 is induced

by the exterior differential on differential forms. Thus, the degeneration of
this spectral sequence implies in particular that dp,01 = 0, which implies the
claim.

(2) Again by the degeneration of the spectral sequence, we have

Ep,q
1 = Hq(X,Ωp

X(logD)) ∼= grpFH
p+q(X −D)⊗Q C.

By the purity assumption, this is zero for q > 0. Thus, the sheaves
Ωp

X(logD) are acyclic. This is also true for the (soft) sheaves Ep
X(logD);

thus, taking global sections of (3.3) leads to the desired quasi-isomorphism.

�
We note that under the assumptions of Proposition 3.4 (2), the complement

X−D is formal in the sense of rational homotopy theory, i.e., its differential graded
algebra of smooth differential forms (E∗(X −D), d) is formal. This is because the
inclusion (E∗(X, logD), d) ↪→ (E∗(X−D), d) is a quasi-isomorphism of differential
graded algebras. This applies in particular to X = M0,n+1 and D = ∂M0,n+1 since
the complement M0,n+1 satisfies the purity assumption [Get95, Lemma 3.12]. In
this case Proposition 3.4 also implies the following operadic formality result, which
appears in [GK98, §6.10] and [AP17, §1.6].
Theorem 3.5. The operad G ravGK is formal.

Proof. By Proposition 3.4 the inclusion

(Ω∗(M0,n+1, log ∂M0,n+1), d = 0) ↪→ (E∗(M0,n+1, log ∂M0,n+1), d)

is a quasi-isomorphism and induces an isomorphism Ω∗(M0,n+1, log ∂M0,n+1) ∼=
H∗(M0,n+1)⊗Q C. This inclusion is compatible with the residue morphisms since
the residue of a holomorphic logarithmic form is holomorphic. We thus get, after du-
alizing and suspending, a quasi-isomorphism of operads G ravGK ∼→ GravGK ⊗QC.

�
Remark 3.6. As noted in [GK98], the same argument implies that G ravGK is formal
as an anticyclic operad.

4. Comparing the two definitions of the gravity operad

The missing link between the two definitions of the gravity operad that we have
used is a third definition given in [KSV95].

4.1. Models with corners. For an integer n ≥ 2 let us denote by C(n) =
Conf(n,R2)/(R2�R>0) the quotient of the configuration space of n ordered points
in R2 by translations and dilations. There is a natural S1-action on C(n) whose
quotient map is the natural map C(n) → M0,n+1. Here we briefly explain how to
construct a commutative square

C(n) �
� ∼ ��

��

FM(n)

��
M0,n+1

� � ∼ �� X(n)
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where FM(n) and X(n) are compactifications of C(n) and M0,n+1, respectively,
which are homotopy equivalences, the top horizontal arrow is S1-equivariant, and
the vertical arrows are the quotient maps.

The space FM(n) is the Fulton–MacPherson compactification of C(n), which
was introduced in the context of operads by Getzler–Jones [GJ94]. Let us recall
that it is a manifold with corners whose interior is C(n) and that it has a natu-
ral stratification indexed by the poset of n-trees. The stratum corresponding to
an n-tree t is denoted by FM0(t), and its closure is denoted by FM(t). They
have codimension the number of internal edges of t, and we have natural product
decompositions

(4.1) FM0(t) �
∏

v∈V (t)

C(|v|) and FM(t) �
∏

v∈V (t)

FM(|v|) ,

where V (t) denotes the set of vertices of t and |v| denotes the number of incoming
edges at a vertex v. The S1-action on FM(n) is compatible with the stratifications,
and the induced action on the products (4.1) is the diagonal action. This shows
that the quotient X(n) := FM(n)/S1 has the structure of a manifold with corners
and has a stratification indexed by the poset of n-trees. The interior of X(n) is
M0,n+1, and the compactification M0,n+1 ↪→ X(n) can alternatively be obtained

from M0,n+1 by performing real blow-ups of all irreducible components of the

boundary ∂M0,n+1. For instance, X(3) is isomorphic to the real blow-up of P1(C)
along three points. For more details, see [KSV95], whereX(n) is denoted by Mn+1,

and [Kon17] , where it is denoted by MR

0,n+1.
It is customary to set C(0) = FM(0) = ∅ and C(1) = FM(1) = {∗}. By using

the product decompositions (4.1), one sees that the closed immersions FM(t) ↪→
FM(n) give the collection {FM(n) , n ≥ 0} the structure of a topological operad.
This is a model for the little disks operad, as the following proposition shows.

Proposition 4.1 ([GJ94,Kon99, Sal01, LV14]). The topological operads FM and
D are connected by a zig-zag of weak equivalences.

In the next section we explain how to get the structure of an operad on the
shifted homology groups of the spaces X(n).

4.2. The Kimura–Stasheff–Voronov operad. Let us denote by X0(t) the stra-
tum of X(n) corresponding to a rooted n-tree t, and by X(t) its closure. We have
natural isomorphisms,

X0(t) �

⎛
⎝ ∏

v∈V (t)

C(|v|)

⎞
⎠ /S1 and X(t) �

⎛
⎝ ∏

v∈V (t)

FM(|v|)

⎞
⎠ /S1,

where the quotients refer to the diagonal S1-actions. Thus, X(t) is acted upon by
the topological group (S1)V (t)/S1, and the quotient map is

X(t) →
∏

v∈V (t)

X(|v|) .

For instance, for the tree t = t(r, s, i) (see Figure 1), X(t) ↪→ X(n) is a closed
subspace of real codimension 1 and we get an S1-bundle

(4.2) X(t) → X(r)×X(s) .
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In homology, this gives rise to a transfer map

(4.3) H∗(X(r))⊗H∗(X(s))

−→ H∗(X(r)×X(s)) → H∗+1(X(t)) → H∗+1(X(n)) ,

where the first map is the Künneth isomorphism, the second map is the transfer
map associated to the S1-bundle (4.2), and the third map is induced by the inclusion
X(t) ↪→ X(n).

Definition 4.2. The Kimura–Stasheff–Voronov gravity operad GravKSV is the
graded operad whose arity n component is

GravKSV (n) := H∗−1(X(n))

and whose composition morphisms ◦i are the (suspensions of the) morphisms (4.3).

4.3. Compatibility with residues. We start with a general lemma. Let X be a
smooth complex variety, D ⊂ X be a smooth divisor, and π : Y → X be the real
blow-up along D. It is a manifold with boundary ∂Y = π−1(D). The restriction
π : ∂Y → D is an S1-bundle which is nothing but the sphere bundle of the normal
bundle of D inside X. We thus have a transfer map H∗−1(D) → H∗(∂Y ) in
homology. We also have a map H∗(∂Y ) → H∗(Y ) induced by the closed immersion
∂Y ↪→ Y in homology, and we note that the inclusion Y − ∂Y → Y is a homotopy
equivalence and that the restriction π : Y − ∂Y → X −D is an isomorphism.

Lemma 4.3. The composite

H∗−1(D) → H∗(∂Y ) → H∗(Y ) � H∗(Y − ∂Y ) � H∗(X −D)

is dual to the residue morphism H∗(X −D) → H∗−1(D).

Proof. It is enough to do the proof in the case of homology and cohomology with
complex coefficients, in which case it is a consequence of the Leray residue formula;
see [Pha11, Theorem 2.4]. �

Proposition 4.4. The natural isomorphism H∗−1(M0,n+1)

−→ H∗−1(X(n)) in-

duces an isomorphism of operads between the homology of the Getzler–Kapranov
chain model for the gravity operad and the Kimura–Stasheff–Voronov gravity op-
erad:

GravGK 
−→ GravKSV .

Proof. We show that the isomorphisms are compatible with the composition maps
◦i corresponding to the tree t = t(r, s, i) (see Figure 1). It is convenient to set
M+

0,n+1 = M0,n+1 ∪ M0,r+1 × M0,s+1 and X(n)+ = X0(n) ∪ X0(t), viewed as

open subspaces of M0,n+1 and X(n), respectively. By construction, there is a

morphism X(n)+ → M+
0,n+1, which is the real blow-up along M0,r+1×M0,s+1. In

the following diagram, the arrows marked τ are transfer maps for S1-bundles and
the arrows marked i∗ are induced in homology by closed immersions. According
to Lemma 4.3, the first row of the diagram is the composition morphism ◦i in the
operad GravGK .

H∗−2(M0,r+1 ×M0,s+1)
τ ��



��

H∗−1(X
0(t))

i∗ ��



��

H∗−1(X(n)+)



��

H∗−1(M0,n+1)

��



�����

���
���

��

H∗−2(X(r)×X(s))
τ �� H∗−1(X(t))

i∗ �� H∗−1(X(n))
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The arrows marked � in this diagram are induced by open immersions which are
homotopy equivalences, and the diagram commutes. Since the second row is the
composition morphism ◦i in the operad GravKSV , we are done. �
4.4. Compatibility with the little disks. The quotient map FM(n) → X(n)
is an S1-bundle and thus gives rise to a transfer map in homology:

(4.4) H∗−1(X(n)) → H∗(FM(n)) .

Proposition 4.5. The transfer map (4.4) induces a morphism of operads from
the Kimura–Stasheff–Voronov operad to the homology of the Fulton–MacPherson
operad:

GravKSV → H∗(FM) .

Proof. We show that the transfer maps (4.4) are compatible with the composition
maps ◦i corresponding to the tree t = t(r, s, i) (see Figure 1). This amounts to
showing that the outer square of the following diagram commutes. The arrows
marked K are Künneth isomorphisms, the arrows marked τ are transfer maps
for torus bundles, and the arrows marked i∗ are induced in homology by closed
immersions.

H∗(FM(r))⊗H∗(FM(s))
K



�� H∗(FM(r)× FM(s))

= �� H∗(FM(t))
i∗ �� H∗(FM(n))

H∗−1(X(r))⊗H∗−1(X(s))
K


 ��

τ⊗τ

��

H∗−2(X(r)×X(s)) τ
��

τ

��

H∗−1(X(t))
i∗

��

τ

��

H∗−1(X(n))

τ

��

It is enough to show that the three squares forming the diagram commute.

(1) The leftmost square commutes because transfer maps are compatible with
the Künneth isomorphisms.

(2) The central square commutes because of the functoriality of the trans-
fer maps for the composite FM(r) × FM(s) → (FM(r) × FM(s))/S1 =
X(t) → (FM(r)/S1)× (FM(s)/S1) = X(r)×X(s).

(3) The rightmost square commutes because the following square is cartesian:

FM(t) �
� ��

��

FM(n)

��
X(t) �

� �� X(n)

�
4.5. Equivalence of the two definitions of the gravity operad.

Theorem 4.6. The natural isomorphisms GravGK(n)

−→ GravW (n) induce an

isomorphism of operads between the homology of the Getzler–Kapranov model and
the homology of the Westerland model.

Proof. We form the following commutative square of symmetric sequences:

GravGK



��

(1)



�� GravKSV

��

(2)

��
GravW � �

(3)
�� H∗(FM)
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The arrow labeled (1) is an isomorphism of operads by Proposition 4.4; the arrow
labeled (2) is a morphism of operads by Proposition 4.5; the arrow labeled (3) is

a morphism of operads by the construction of GravW and Proposition 4.1. Thus,
the remaining arrow is an isomorphism of operads. �
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