On two chain models for the gravity operad
HTML articles powered by AMS MathViewer
- by Clément Dupont and Geoffroy Horel
- Proc. Amer. Math. Soc. 146 (2018), 1895-1910
- DOI: https://doi.org/10.1090/proc/13874
- Published electronically: December 12, 2017
- PDF | Request permission
Abstract:
In this paper we recall the construction of two chain level lifts of the gravity operad, one due to Getzler–Kapranov and one due to Westerland. We prove that these two operads are formal and that they indeed have isomorphic homology.References
- Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004 (French, with English and French summaries). MR 2115000
- J. Alm and D. Petersen, Brown’s dihedral moduli space and freedom of the gravity operad, Annales scientifiques de l’ENS 50, fascicule 5 (2017), 1080-1122.
- J. Cirici and G. Horel, Mixed Hodge structures and formality of symmetric monoidal functors, arXiv preprint arXiv:1703.06816 (2017).
- Kevin Costello, Renormalization and effective field theory, Mathematical Surveys and Monographs, vol. 170, American Mathematical Society, Providence, RI, 2011. MR 2778558, DOI 10.1090/surv/170
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- Benoit Fresse, Homotopy of operads and Grothendieck-Teichmüller groups. Part 1, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017. The algebraic theory and its topological background. MR 3643404, DOI 10.1090/surv/217.1
- Benoit Fresse, Homotopy of operads and grothendieck–teichmüller groups: Part 2, American Mathematical Soc., 2017.
- E. Getzler, Two-dimensional topological gravity and equivariant cohomology, Comm. Math. Phys. 163 (1994), no. 3, 473–489. MR 1284793, DOI 10.1007/BF02101459
- E. Getzler, Operads and moduli spaces of genus $0$ Riemann surfaces, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 199–230. MR 1363058, DOI 10.1007/978-1-4612-4264-2_{8}
- E. Getzler and J. D. S. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, arXiv:hep-th/9403055 (1994).
- E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 167–201. MR 1358617
- E. Getzler and M. M. Kapranov, Modular operads, Compositio Math. 110 (1998), no. 1, 65–126. MR 1601666, DOI 10.1023/A:1000245600345
- F. Guillén Santos, V. Navarro, P. Pascual, and A. Roig, Moduli spaces and formal operads, Duke Math. J. 129 (2005), no. 2, 291–335. MR 2165544, DOI 10.1215/S0012-7094-05-12924-6
- G. Horel, Profinite completion of operads and the Grothendieck-Teichmüller group, Advances in Math. vol 321, (2017), pp 326-390.
- John R. Klein, The dualizing spectrum of a topological group, Math. Ann. 319 (2001), no. 3, 421–456. MR 1819876, DOI 10.1007/PL00004441
- Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72. Moshé Flato (1937–1998). MR 1718044, DOI 10.1023/A:1007555725247
- Maxim Kontsevich, Derived Grothendieck-Teichmüller group and graph complexes [after T. Willwacher], Séminaire Bourbaki, 69ème année (2016-2017), no. 1126, 2017.
- Takashi Kimura, Jim Stasheff, and Alexander A. Voronov, On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995), no. 1, 1–25. MR 1341693, DOI 10.1007/BF02103769
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra. 2016, Preprint, available at http://www. math. harvard. edu/˜ lurie (2016).
- Pascal Lambrechts and Ismar Volić, Formality of the little $N$-disks operad, Mem. Amer. Math. Soc. 230 (2014), no. 1079, viii+116. MR 3220287
- Dan Petersen, Minimal models, GT-action and formality of the little disk operad, Selecta Math. (N.S.) 20 (2014), no. 3, 817–822. MR 3217461, DOI 10.1007/s00029-013-0135-5
- Frédéric Pham, Singularities of integrals, Universitext, Springer, London; EDP Sciences, Les Ulis, 2011. Homology, hyperfunctions and microlocal analysis; With a foreword by Jacques Bros; Translated from the 2005 French original; With supplementary references by Claude Sabbah. MR 2798679, DOI 10.1007/978-0-85729-603-0
- Paolo Salvatore, Configuration spaces with summable labels, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 375–395. MR 1851264
- Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. MR 1928647, DOI 10.1016/S0040-9383(02)00006-X
- Dmitry E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), no. 1-2, 65–72. MR 2064592, DOI 10.1023/B:MATH.0000017651.12703.a1
- Craig Westerland, Equivariant operads, string topology, and Tate cohomology, Math. Ann. 340 (2008), no. 1, 97–142. MR 2349769, DOI 10.1007/s00208-007-0140-0
Bibliographic Information
- Geoffroy Horel
- Affiliation: Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, France; Université Paris 13, Sorbonne Paris Cité, Laboratoire Analyse, Géométrie et Applications, CNRS (UMR 7539), 93430, Villetaneuse, France
- MR Author ID: 1112508
- Email: clement.dupont@umontpellier.fr, horel@math.univ-paris13.fr
- Received by editor(s): February 26, 2017
- Received by editor(s) in revised form: July 4, 2017
- Published electronically: December 12, 2017
- Communicated by: Michael A. Mandell
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 1895-1910
- MSC (2010): Primary 18D50, 32G15, 55P62; Secondary 55P42
- DOI: https://doi.org/10.1090/proc/13874
- MathSciNet review: 3767344