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OSCILLATION AND NONOSCILLATION CRITERIA

FOR SECOND-ORDER NONLINEAR DIFFERENCE EQUATIONS

OF EULER TYPE

NAOTO YAMAOKA

(Communicated by Mourad Ismail)

Abstract. This paper deals with the oscillatory behavior of solutions of differ-
ence equations corresponding to second-order nonlinear differential equations

of Euler type. The obtained results are represented as a pair of oscillation
and nonoscillation criteria, and are best possible in a certain sense. Linear dif-
ference equations corresponding to the Riemann–Weber version of the Euler
differential equation and its extended equations play an important role in prov-
ing our results. The proofs of our results are based on the Riccati technique
and the phase plane analysis of a system.

1. Introduction

We are concerned with oscillation and nonoscillation criteria for the second-order
nonlinear difference equation

(1.1) Δ2x(n) + c(n)f(x(n)) = 0, n ∈ N,

where Δ is the forward difference operator Δx(n) = x(n + 1) − x(n), Δ2x(n) =
Δ(Δx(n)), c(n) > 0 for n ∈ N, and f(x) is continuous on R and satisfies the signum
condition

(1.2) xf(x) > 0, x �= 0.

For simplicity, we use the notation IN = I ∩ N for the interval I ⊂ R. Then
a nontrivial solution x(n) is said to be oscillatory if for every N ∈ N there exists
n ∈ [N,∞)N such that x(n)x(n + 1) ≤ 0. Otherwise, the solution is said to be
nonoscillatory. Hence, a nonoscillatory solution x(n) is either eventually positive
or eventually negative.

Equation (1.1) naturally includes the linear difference equation

(1.3) Δ2x(n) +
λ

n(n+ 1)
x(n) = 0, n ∈ N,

as a special case, where λ > 0. It is known that the condition λ > 1/4 is necessary
and sufficient for all nontrivial solutions of equation (1.3) to be oscillatory (for
example, see [7, 13]). In other words, 1/4 is the lower bound for all nontrivial
solutions of equation (1.3) to be oscillatory. Such a number is generally called the
oscillation constant.
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Equation (1.3) is one of the discrete equations of the Cauchy–Euler differential
equation

(1.4) y′′ +
λ

t2
y = 0, t > 0.

In fact, putting t = hn and y(t) = x(n), equation (1.3) is transformed into the
equation

y(t+ 2h)− 2y(t+ h) + y(t)

h2
+

λ

t(t+ h)
y(t) = 0,

and therefore, letting h → 0, we have equation (1.4). Hence, difference equation
(1.3) and differential equation (1.4) have similar properties, e.g., these two equations
have the same oscillation constant. Such results can be found in [3, 6, 7].

Let us add a perturbation to equation (1.4) with the oscillation constant and
consider the linear differential equation

(1.5) y′′ +
1

t2

{
1

4
+

1

4

m−1∑
k=1

1

Log2k(t)
+

λ

Log2m(t)

}
y = 0,

where

Logk(t) =

k∏
j=1

logj(t), logj(t) = log(logj−1(t)), log0(t) = t.

Then, from the Liouville transformation s = log t, u(s) = t−1/2y(t) successively,
we can transform equation (1.5) into equation (1.4), and therefore, the oscillation
constant for equation (1.5) is also 1/4 (for example, see [4,5,10,11,14]). Note that
in the case of m = 1, equation (1.5) is called the Riemann–Weber version of the
Euler differential equation.

As for a perturbation of difference equation (1.3) with λ = 1/4, recently, Hongyo
and the author [6] considered the linear difference equation

(1.6) Δ2x(n) +
1

n(n+ 1)

{
1

4
+ δm(n)

}
x(n) = 0,

where

δm(n) =
1

4

m−1∑
k=1

⎛
⎝ k∏

j=1

1

lj(n)lj(n+ 1)

⎞
⎠+ λ

m∏
j=1

1

lj(n)lj(n+ 1)
,

l0(n) = n, and lj(n) is positive and satisfies

(1.7) Δlj(n) =

(
lj−1(n)

Δlj−1(n)
+

1

2

)−1

for n ∈ N. We note that equation (1.6) can be regarded as a discrete equation
of (1.5). In fact, as shown in Section 2 below, lj(n) has similar properties of
the logarithm function logj(n). Moreover, we see that the oscillation constant for
equation (1.6) is also 1/4; see [6].

The oscillation constant for equation (1.6) plays an important role in the oscil-
lation problem for nonlinear difference equations of the form

(1.8) Δ2x(n) +
1

n(n+ 1)
f(x(n)) = 0, n ∈ N.

Indeed, using the oscillation constant for equation (1.6) with m = 1, the author
[13] presented the following pair of oscillation and nonoscillation criteria.
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Theorem A. Assume (1.2) and suppose that there exists λ with λ > 1/4 such that

f(x)

x
≥ 1

4
+

λ

log2(x2)

for |x| sufficiently large. Then all nontrivial solutions of equation (1.8) are oscilla-
tory.

Theorem B. Assume (1.2) and suppose that

f(x)

x
≤ 1

4
+

1

4 log2(x2)

for |x| sufficiently large. Then equation (1.8) has a nonoscillatory solution.

Here let us consider the second-order nonlinear differential equation of Euler
type

(1.9) y′′ +
1

t2
f(y) = 0, t > 0,

which corresponds to difference equation (1.8). The study of the oscillation behavior
of solutions of equation (1.9) was started by Sugie and Hara [8], and they gave a
pair of oscillation and nonoscillation criteria for equation (1.9). After that their
results were improved by many authors. For example, see [1,2,9,10,12,14] and the
references cited therein. In particular, oscillation and nonoscillation criteria given
by Sugie and the author [10] can be applied even to the critical case f(x)/x → 1/4
or the more delicate case

(1.10) (log(x2))2
{
f(x)

x
− 1

4

}
→ 1

4

as |x| → ∞.
On the other hand, as for difference equation (1.8), by means of Theorems A

and B, we cannot judge whether solutions of equation (1.8) are oscillatory or not
when f(x) satisfies (1.10). The purpose of this paper is to settle this problem and
to improve Theorems A and B. Our main results are stated as follows.

Theorem 1.1. Assume (1.2) and suppose that c(n) satisfies

(1.11) n(n+ 1)c(n) ≥ 1

for n ∈ N sufficiently large and that there exist m ∈ N and λ with λ > 1/4 such
that

(1.12)
f(x)

x
≥ 1

4
+

1

4

m−1∑
k=1

1

Log2k(x
2)

+
λ

Log2m(x2)

for |x| sufficiently large. Then all nontrivial solutions of equation (1.1) are oscilla-
tory.

Theorem 1.2. Assume (1.2) and suppose that c(n) satisfies

(1.13) n(n+ 1)c(n) ≤ 1

for n ∈ N sufficiently large and that there exists m ∈ N such that

(1.14)
f(x)

x
≤ 1

4
+

1

4

m∑
k=1

1

Log2k(x
2)

for |x| sufficiently large. Then equation (1.1) has a nonoscillatory solution.
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Remark 1.3. When c(n) = 1/(n(n+ 1)) and m = 1, Theorems 1.1 and 1.2 become
Theorems A and B, respectively.

2. Preliminaries

In this section, we prepare some lemmas which are useful for proving our results.
To begin with, we give the relation between lj(n) and logj(n), and the oscillation
and nonoscillation criteria for equation (1.6).

Lemma 2.1 ([6, Lemma 2.3]). Let j ∈ N. Then there exists C > 1 such that

|lj(n)− logj(n)| < C

for n ∈ N sufficiently large, where lj(n) is defined by (1.7).

Remark 2.2. From the definition of lj(n) and Lemma 2.1, we see that lj(n) has the
following properties:

(i) lj(n) is increasing because Δlj(n) is represented as

Δlj(n) =
2Δlj−1(n)

2lj−1(n) + Δlj−1(n)
=

j−1∏
i=0

2

li(n) + li(n+ 1)
> 0.

(ii) lj(n) → ∞ as n → ∞.
(iii) We can choose lj(n) such that either lj(n) ≥ logj(n) or lj(n) ≤ logj(n) for

n ∈ N sufficiently large. In fact, by Lemma 2.1, there exists C > 1 such
that

0 < lj(n)− C < logj(n) < lj(n) + C

for n ∈ N sufficiently large. Let l̃j(n) = lj(n) + C. Then l̃j(n) satisfies

l̃j(n) ≥ logj(n) and Δl̃j(n) = Δlj(n) for n ∈ N sufficiently large. Similarly,

let l̂j(n) = lj(n) − C. Then we have l̂j(n) ≤ logj(n) and Δl̂j(n) = Δlj(n)
for n ∈ N sufficiently large.

Lemma 2.3 ([6, Corollary 4.2]). Equation (1.6) can be classified into two types as
follows:

(i) if λ > 1/4, then all nontrivial solutions of equation (1.6) are oscillatory;
(ii) if 0 < λ ≤ 1/4, then all nontrivial solutions of equation (1.6) are nonoscil-

latory.

We next consider the Riccati inequalities

(2.1) Δw(n) +
w2(n) + δ(n)

w(n) + n+ (1/2)
≤ 0

and

(2.2) Δw(n) +
w2(n) + δ(n)

w(n) + n+ (1/2)
≥ 0,

where δ(n) ≥ 0 for n ∈ [n0,∞)N. Then we have the following lemmas.

Lemma 2.4. Suppose that w(n) satisfies inequality (2.1) for n ∈ N sufficiently
large and that {w(n)} is bounded below. Then the solution is nonincreasing and
tends to 0 as n → ∞.

As in the proof of Lemma 3.2 in [13], we can easily prove this lemma, and
therefore we omit the proof.
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Lemma 2.5. Let δ(n) = C/ log2 n, where C > 0. Suppose that w(n) is positive
and satisfies inequality (2.1) for n ∈ N sufficiently large. Then we have

w(n) ≤ 2

log n

for n ∈ N sufficiently large.

Proof. Since w(n) is eventually positive and satisfies inequality (2.1) with δ(n) =
C/ log2 n, we see that assumptions in Lemma 2.4 hold. Hence, we have 0 < w(n) <
1/2 for n ∈ N sufficiently large. Let z(n) = (log2 n)w(n) − log n. Then, using

inequality (2.1) with δ(n) = C/ log2 n, we have

Δz(n) = (Δ(log2 n))w(n) + log2(n+ 1)Δw(n)−Δ log n

≤ (Δ(log2 n))w(n)− log2(n+ 1)

w(n) + n+ (1/2)

{
w2(n) +

C

log2 n

}
−Δ log n

≤ − log2(n+ 1)

n+ 1
w2(n) + (Δ(log2 n))w(n)− C log2(n+ 1)

(n+ 1) log2 n
−Δ log n

= − log2(n+ 1)

n+ 1

{
w(n)− (n+ 1)(Δ(log2 n))

2 log2(n+ 1)

}2

+
(n+ 1)(Δ(log2 n))2

4 log2(n+ 1)
− C log2(n+ 1)

(n+ 1) log2 n
−Δ log n

≤ (n+ 1){(log n+ log(n+ 1))Δ logn}2

4 log2(n+ 1)
− C log2(n+ 1)

(n+ 1) log2 n
−Δ log n,

and therefore, we obtain

(n+ 1)Δz(n) ≤
(
(logn+ log(n+ 1))(n+ 1)Δ logn

2 log(n+ 1)

)2

− C

(
log(n+ 1)

log n

)2

− (n+ 1)Δ logn

→− C

as n → ∞. Note that (n+ 1)Δ logn = log (1 + 1/n)
n+1 → 1 as n → ∞. Hence, we

have Δz(n) < 0 for n ∈ N sufficiently large. Thus, we obtain

w(n) =
1

log n
+

z(n)

log2 n
≤ 2

log n

for n ∈ N sufficiently large. �

Lemma 2.6. Suppose that there exists n0 ∈ N such that w(n) is positive and
satisfies inequality (2.1) for n ∈ [n0,∞)N. Then the linear difference equation

(2.3) Δ2y(n) +
1

n(n+ 1)

{
1

4
+ δ(n)

}
y(n) = 0

has a nonoscillatory solution.

Proof. Let v(n) be a sequence satisfying v(n0) = w(n0) > 0 and

(2.4) Δv(n) +
v2(n) + δ(n)

v(n) + n+ (1/2)
= 0
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for n ∈ [n0,∞)N. Let F : N× [0,∞) → R be a function defined by

F (n, t) = t− t2 + δ(n)

t+ n+ (1/2)
.

Then v(n) satisfies v(n+ 1) = F (n, v(n)). Using mathematical induction on n, we
show that v(n) is well defined and satisfies v(n) ≥ w(n) > 0 for n ∈ [n0,∞)N. It
is clear that the assertion is true for n = n0. Assume that the assertion is true for
n = p. Then v(p+ 1) = F (p, v(p)) exists because v(p) > 0. Since

d

dt
F (p, t) =

{p+ (1/2)}2 + δ(p)

(t+ p+ (1/2))2
> 0,

F (p, t) is increasing with respect to t ∈ (0,∞) for each fixed p. Hence, together
with inequality (2.1), we have

v(p+ 1) = F (p, v(p)) ≥ F (p, w(p)) ≥ w(p+ 1) > 0.

Thus, the assertion is also true for n = p+ 1.
Let

y(n) =

n−1∏
j=n0

(
1 +

1

2j
+

v(j)

j

)
, n ∈ [n0,∞)N.

Then we have

Δy(n) =

(
1

2n
+

v(n)

n

)
y(n).

Hence, we obtain

v(n) =
nΔy(n)

y(n)
− 1

2
=

ny(n+ 1)

y(n)
− n− 1

2
,

and therefore we get

Δv(n) =
Δ(nΔy(n))y(n)− n(Δy(n))2

y(n)y(n+ 1)

=
{Δy(n) + (n+ 1)Δ2y(n)}y(n)− n(Δy(n))2

y(n)y(n+ 1)

=
y(n)

ny(n+ 1)

{
nΔy(n)

y(n)
+

n(n+ 1)Δ2y(n)

y(n)
−

(
nΔy(n)

y(n)

)2
}

=
1

v(n) + n+ (1/2)

{
−v2(n) +

1

4
+

n(n+ 1)Δ2y(n)

y(n)

}
.

Together with (2.4), we see that y(n) is a positive solution of equation (2.3). �

Lemma 2.7. Let v(n) be a positive solution of equation (2.4). Suppose that w(n)
satisfies w(n0) = v(n0) and inequality (2.2) for n ∈ [n0, n1)N. Then w(n) ≥ v(n)
for n ∈ [n0, n1]N.

Proof. We use mathematical induction on n. It is clear that the assertion is true
for n = n0. Assume that w(n) ≥ v(n) for n = p ∈ [n0, n1)N. Let

F (n, t) = t− t2 + δ(n)

t+ n+ (1/2)
.
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Then, as in the proof of Lemma 2.6, we can show that F (n, t) is increasing with
respect t ∈ [0,∞) for each fixed n. Hence, we have

w(p+ 1) ≥ F (p, w(p)) ≥ F (p, v(p)) = v(p+ 1).

Thus, the assertion is also true for n = p+ 1. This completes the proof. �

3. Proof of the main theorems

In this section, we prove the oscillation and nonoscillation criteria, Theorems 1.1
and 1.2. Using the following lemma, we first give the proof of Theorem 1.1.

Lemma 3.1. Assume (1.2) and suppose that c(n) satisfies (1.11) for n ∈ N suffi-
ciently large, and that equation (1.1) has a positive solution. Then the solution is
increasing for n ∈ N sufficiently large and it tends to ∞ as n → ∞.

Proof. Let x(n) be a positive solution of equation (1.1). Then there exists n0 ∈ N

such that x(n) > 0 for n ∈ [n0,∞)N. Hence, by (1.2), we have

(3.1) Δ2x(n) = −c(n)f(x(n)) < 0

for n ∈ [n0,∞)N.
We first show that Δx(n) > 0 for n ∈ [n0,∞)N. By way of contradiction,

we suppose that there exists n1 ∈ [n0,∞)N such that Δx(n1) ≤ 0. Then, using
(3.1), we have Δx(n) < Δx(n1) ≤ 0 for n ∈ (n1,∞)N. Using (3.1) again, we get
Δx(n) ≤ Δx(n1 + 1) < 0 for n ∈ (n1,∞)N. Hence, we obtain

x(n) ≤ Δx(n1 + 1)(n− (n1 + 1)) + x(n1 + 1) → −∞

as n → ∞, which is a contradiction to the assumption that x(n) is positive for
n ∈ [n0,∞)N. Thus, x(n) is increasing for n ∈ [n0,∞)N.

We next suppose that {x(n)} is bounded from above. Then there exists a positive
number L such that limn→∞ x(n) = L. Since f(x) is continuous on R, we have
limn→∞ f(x(n)) = f(L), and therefore there exists n2 ∈ [n0,∞)N such that 0 <
f(L)/2 < f(x(n)) for n ∈ [n2,∞)N. Hence, together with (1.11), we have

Δx(n) = Δx(p) +

p−1∑
j=n

c(j)f(x(j)) >
f(L)

2

p−1∑
j=n

1

j(j + 1)
=

f(L)

2

(
1

n
− 1

p

)

for n, p ∈ [n2,∞)N with p > n. Taking the limit of this inequality as p → ∞, we
get Δx(n) ≥ f(L)/(2n) for n ∈ [n2,∞)N, and therefore we obtain

x(n) ≥ f(L)

2

n−1∑
j=n2

1

j
+ x(n2) → ∞

as n → ∞. This contradicts the assumption that {x(n)} is bounded from above.
Thus, we have limn→∞ x(n) = ∞. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let R > 0 be a large number satisfying (1.12) for |x| ≥ R.
Since λ > 1/4, there exists ε0 > 0 such that

(3.2)
1

4
<

1

4
+ ε0 < λ.
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The proof is by contradiction. Suppose that equation (1.1) has a nonoscillatory
solution x(n). Then, without loss of generality, we may assume that x(n) is even-
tually positive. By Lemma 3.1, we see that x(n) ≥ R and Δx(n) > 0 for n ∈ N

sufficiently large. Put

w(n) =
nΔx(n)

x(n)
− 1

2
.

Then we have w(n) > −1/2 for n ∈ N sufficiently large. Moreover, using (1.11) and
(1.12), we also have

(3.3)

Δw(n) =
Δ(nΔx(n))x(n)− n(Δx(n))2

x(n)x(n+ 1)

=
{Δx(n) + (n+ 1)Δ2x(n)}x(n)

x(n)x(n+ 1)
− n(Δx(n))2

x(n)x(n+ 1)

≤ {Δx(n)− f(x(n))/n}x(n)
x(n)x(n+ 1)

−
(
nΔx(n)

x(n)

)2
x(n)

nx(n+ 1)

= − x(n)

nx(n+ 1)

{
−nΔx(n)

x(n)
+

f(x(n))

x(n)
+

(
nΔx(n)

x(n)

)2
}

≤ −1

w(n) + n+ (1/2)

{
w2(n) +

1

4

m−1∑
k=1

1

Log2k(x
2(n))

+
λ

Log2m(x2(n))

}

for n ∈ N sufficiently large. Hence, by Lemma 2.4, there exists n0 ∈ N such that

0 < w(n) ≤ ε0
4

for n ∈ [n0,∞)N. Hence, we have

x(n+ 1)

x(n)
≤ 1 +

1

2n

(
1 +

ε0
2

)
,

and therefore we obtain

x(n)

x(n0)
=

n−1∏
j=n0

x(j + 1)

x(j)
≤

n−1∏
j=n0

{
1 +

1

2j

(
1 +

ε0
2

)}

for n ∈ [n0,∞)N. Since log(1 + z) ≤ z for z > −1, we have

log x(n) ≤
n−1∑
j=n0

log

{
1 +

1

2j

(
1 +

ε0
2

)}
+ log x(n0)

≤
n−1∑
j=n0

1

2j

(
1 +

ε0
2

)
+ log x(n0) =

1

2

(
1 +

ε0
2

) n−1∑
j=n0

1

j
+ log x(n0)

≤ 1

2

(
1 +

ε0
2

) n−1∑
j=n0

∫ j

j−1

dt

t
+ log x(n0) ≤

1

2
(1 + ε0) logn
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for n ∈ N sufficiently large. Hence, by (3.3), we have

Δw(n) ≤ − 1

w(n) + n+ (1/2)

{
w2(n) +

1

4

m−1∑
k=1

1

Log2k(x
2(n))

+
λ

Log2m(x2(n))

}

≤ − 1

w(n) + n+ (1/2)

{
w2(n) +

1

4(log x2(n))2

}

≤ − 1

w(n) + n+ (1/2)

{
w2(n) +

1

4(1 + ε0)2 log
2 n

}

for n ∈ N sufficiently large. Hence, from Lemma 2.5, we obtain w(n) ≤ 2/ logn,
and therefore there exists n1 ∈ [n0,∞)N such that

x(n+ 1)

x(n)
≤ 1 +

1

2n
+

2

n logn

for n ∈ [n1,∞)N. Thus, we have

x(n)

x(n1)
=

n−1∏
j=n1

x(j + 1)

x(j)
≤

n−1∏
j=n1

(
1 +

1

2j
+

2

j log j

)

for n ∈ [n1,∞)N. Hence, there exists M > 0 such that

log x(n) ≤
n−1∑
j=n1

log

(
1 +

1

2j
+

2

j log j

)
+ log x(n1)

≤
n−1∑
j=n1

(
1

2j
+

2

j log j

)
+ log x(n1)

≤
n−1∑
j=n1

(
1

2

∫ j

j−1

dt

t
+ 2

∫ j

j−1

dt

t log t

)
+ log x(n1)

≤ 1

2
log n+

M

2
log2(n)

for n ∈ N sufficiently large. Hence, we have

(3.4) logj(x
2(n)) ≤ logj(n)

(
1 +

M log2(n)

log n

)
, j ∈ [1,m]N,

for n ∈ N sufficiently large. Indeed, we can easily check this inequality by using
mathematical induction on j. It is clear that (3.4) is true for j = 1. Assume that
(3.4) with j ∈ N holds. Then we have

logj+1(x
2(n)) = log(logj(x

2(n))) ≤ log

{
logj(n)

(
1 +

M log2(n)

log n

)}

= log(logj(n)) + log

(
1 +

M log2(n)

log n

)
≤ logj+1(n) +

M log2(n)

log n

≤ logj+1(n)

(
1 +

M log2(n)

log n

)
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for n ∈ N sufficiently large. Since (1 + z)−α ≥ 1− αz for z > 0 and α > 0, we have
the inequality

1

Log2k(x
2(n))

=

⎛
⎝ k∏

j=1

logj(x
2(n))

⎞
⎠

−2

≥

⎡
⎣ k∏
j=1

{
logj(n)

(
1 +

M log2(n)

log n

)}⎤⎦
−2

=

⎛
⎝ k∏

j=1

logj(n)

⎞
⎠

−2 (
1 +

M log2(n)

log n

)−2k

≥

⎛
⎝ k∏

j=1

1

log2j(n)

⎞
⎠(

1− 2mM log2(n)

log n

)

≥
k∏

j=1

1

log2j(n)
− log22(n)

log3 n
, k ∈ [1,m]N,

for n ∈ N sufficiently large. Moreover, from Remark 2.2(iii), we can choose lj(n)
satisfying logj(n) ≤ lj(n) < lj(n+ 1) for n ∈ N sufficiently large. Hence, by (3.3),
we have(

w(n) + n+
1

2

)
Δw(n)

≤−
{
w2(n) +

1

4

m−1∑
k=1

1

Log2k(x
2(n))

+
λ

Log2m(x2(n))

}

≤−

⎧⎨
⎩w2(n) +

1

4

m−1∑
k=1

⎛
⎝ k∏

j=1

1

log2j (n)

⎞
⎠+ λ

m∏
j=1

1

log2j (n)
−
(
m− 1

4
+ λ

)
log22(n)

log3 n

⎫⎬
⎭

≤−

⎧⎨
⎩w2(n) +

1

4

m−1∑
k=1

⎛
⎝ k∏

j=1

1

log2j (n)

⎞
⎠+ (λ− ε0)

m∏
j=1

1

log2j (n)

⎫⎬
⎭

≤− {w2(n) + δ̃(n)}
for n ∈ N sufficiently large, where

δ̃(n) =
1

4

m−1∑
k=1

⎛
⎝ k∏

j=1

1

lj(n)lj(n+ 1)

⎞
⎠+ (λ− ε0)

m∏
j=1

1

lj(n)lj(n+ 1)
.

Hence, by Lemma 2.6, the linear difference equation

(3.5) Δ2y(n) +
1

n(n+ 1)

{
1

4
+ δ̃(n)

}
y(n) = 0

has a nonoscillatory solution. However, by (3.2), we have λ − ε0 > 1/4. Hence,
from Lemma 2.3, we see that all nontrivial solutions of equation (3.5) are oscillatory.
This is a contradiction. The proof is now complete. �

We next prove Theorem 1.2.

Proof of Theorem 1.2. We only give the proof of the case that (1.14) holds for
x ≥ R, where R is a large number. This is because the other case is carried out in
the same manner.
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Let us consider the linear difference equation

(3.6) Δ2u(n) +
1

n(n+ 1)

⎧⎨
⎩1

4
+

1

4

m∑
k=1

⎛
⎝ k∏

j=1

1

lj(n)lj(n+ 1)

⎞
⎠
⎫⎬
⎭u(n) = 0,

which is equivalent to equation (1.6) with λ = 1/4. Note that, from Remark 2.2(iii),
we can choose lj(n) satisfying

(3.7) 2 logR ≤ log1(n) ≤ l1(n) and lj(n) ≤ logj(n), j ∈ [2,m]N

for n ∈ N sufficiently large. From Lemma 2.3(ii), equation (3.6) has a positive
solution u(n). As in the proof of Lemma 3.1, we can show that Δu(n) > 0 for
n ∈ N sufficiently large and that u(n) → ∞ as n → ∞. Put

v(n) =
nΔu(n)

u(n)
− 1

2
.

Then we see that v(n) satisfies

Δv(n) = − 1

v(n) + n+ (1/2)

⎧⎨
⎩v2(n) +

1

4

m∑
k=1

⎛
⎝ k∏

j=1

1

lj(n)lj(n+ 1)

⎞
⎠
⎫⎬
⎭

for n ∈ N sufficiently large. Moreover, we see that {v(n)} is bounded below because
u(n) and Δu(n) are positive for n ∈ N sufficiently large. Hence, from Lemma 2.4,
we have that v(n) ↘ 0 as n → ∞, and therefore we obtain

(3.8) 0 < v(n) <
1

2

for n ∈ [n0,∞)N. From the facts above, there exists n0 ∈ N such that (1.13), (3.7),
and (3.8) hold for n∈ [n0,∞)N. Since equation (3.6) is linear, (el1(n0+1)/2/u(n0))u(n)
is also a positive solution of equation (3.6). Hence, without loss of generality, we
may assume that u(n) satisfies

(3.9) R ≤ el1(n0+1)/2 = u(n0) ≤ u(n)

for n ∈ N sufficiently large.
By way of contradiction, we suppose that all nontrivial solutions of equation (1.1)

are oscillatory. Let x(n) be the oscillatory solution of equation (1.1) satisfying the
initial condition

(3.10) x(n0) = u(n0) and Δx(n0) = Δu(n0)

and let y(n) = nΔx(n)− x(n). Then (x(n), y(n)) satisfies

(3.11)

{
nΔx(n) = y(n) + x(n),

nΔy(n) = −n(n+ 1)c(n)f(x(n)).

From (3.8) and (3.10), we have y(n0) = n0Δx(n0)− x(n0) > −x(n0)/2, and there-
fore we get

(x(n0), y(n0)) ∈ {(x, y) : x ≥ R, −x/2 ≤ y < 0} def
= D.

Since x(n) is oscillatory, (x(n), y(n)) cannot stay in D. Moreover, we also see that
if (x(n), y(n)) ∈ D, then (x(n + 1), y(n + 1)) is in the 4th quadrant. In fact, by
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nΔx(n) > 0 and nΔy(n) < 0, we obtain x(n + 1) > x(n) and y(n + 1) < y(n).
Hence, there exists n1 ∈ (n0,∞)N such that (x(n), y(n)) ∈ D for n ∈ [n0, n1)N and

(3.12) (x(n1), y(n1)) ∈ {(x, y) : y < −x/2 < 0} .
Then, we obtain

nΔx(n) = y(n) + x(n) ≥ −x(n)

2
+ x(n) =

x(n)

2
,

and therefore we have

x(n)

x(n0)
=

n−1∏
j=n0

x(j + 1)

x(j)
≥

n−1∏
j=n0

(
1 +

1

2j

)

for n ∈ [n0, n1)N. Hence, by using (3.7), (3.9), (3.10), and the relation log(1+ z) ≥
z − z2/2 for z ≥ 0, we obtain

log x(n) ≥
n−1∑
j=n0

log

(
1 +

1

2j

)
+ log x(n0) ≥

n−1∑
j=n0

{
1

2j
− 1

2

(
1

2j

)2
}

+
l1(n0 + 1)

2

=
1

2

n−1∑
j=n0

(
1

j
− 1

4j2

)
+

l1(n0 + 1)

2
≥ 1

2

n−1∑
j=n0

2

2j + 3
+

l1(n0 + 1)

2

=
1

2

⎧⎨
⎩

n−1∑
j=n0

Δl1(j + 1) + l1(n0 + 1)

⎫⎬
⎭ =

l1(n+ 1)

2
≥ log1(n+ 1)

2

for n ∈ [n0, n1)N. Hence, by (3.7), we have logj(x
2(n)) ≥ logj(n + 1) ≥ lj(n + 1)

for j ∈ [2,m]N, and therefore we obtain

(3.13)

Log2k(x
2(n)) =

⎛
⎝ k∏

j=1

logj(x
2(n))

⎞
⎠

2

≥

⎛
⎝ k∏

j=1

lj(n+ 1)

⎞
⎠

2

≥
k∏

j=1

lj(n)lj(n+ 1)

for n ∈ [n0, n1)N.
We define

w(n) =
y(n)

x(n)
+

1

2
.

Then, using (1.13), (1.14), (3.11), and (3.13), we have

Δw(n) =
(Δy(n))x(n)− y(n)Δx(n)

x(n)x(n+ 1)
≥ −f(x(n))x(n)− y(n)(y(n) + x(n))

nx(n)x(n+ 1)

=− x(n)

nx(n+ 1)

{
f(x(n))

x(n)
+

(
y(n)

x(n)

)2

+
y(n)

x(n)

}

≥− 1

w(n) + n+ (1/2)

{
w2(n) +

1

4

m∑
k=1

1

Log2k(x
2(n))

}

≥− 1

w(n) + n+ (1/2)

⎧⎨
⎩w2(n) +

1

4

m∑
k=1

⎛
⎝ k∏

j=1

1

lj(n)lj(n+ 1)

⎞
⎠
⎫⎬
⎭
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for n ∈ [n0, n1)N. Note that, from (3.10) and (3.12), w(n) satisfies

(3.14) w(n0) =
y(n0)

x(n0)
+

1

2
=

n0Δu(n0)

u(n0)
− 1

2
= v(n0) and w(n1) < 0.

Hence, it follows from Lemma 2.7 that v(n) ≤ w(n) for n ∈ [n0, n1]N. Thus, together
with (3.8) and (3.14), we have 0 < v(n1) ≤ w(n1) < 0, which is a contradiction.
This completes the proof. �
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