Orbits of polynomial dynamical systems modulo primes
HTML articles powered by AMS MathViewer
- by Mei-Chu Chang, Carlos D’Andrea, Alina Ostafe, Igor E. Shparlinski and Martín Sombra
- Proc. Amer. Math. Soc. 146 (2018), 2015-2025
- DOI: https://doi.org/10.1090/proc/13904
- Published electronically: December 26, 2017
- PDF | Request permission
Abstract:
We present lower bounds for the orbit length of reduction modulo primes of parametric polynomial dynamical systems defined over the integers, under a suitable hypothesis on its set of preperiodic points over $\mathbb {C}$. Applying recent results of Baker and DeMarco (2011) and of Ghioca, Krieger, Nguyen and Ye (2017), we obtain explicit families of parametric polynomials and initial points such that the reductions modulo primes have long orbits, for all but a finite number of values of the parameters. This generalizes a previous lower bound due to Chang (2015). As a by-product, we also slightly improve a result of Silverman (2008) and recover a result of Akbary and Ghioca (2009) as special extreme cases of our estimates.References
- Amir Akbary and Dragos Ghioca, Periods of orbits modulo primes, J. Number Theory 129 (2009), no. 11, 2831–2842. MR 2549537, DOI 10.1016/j.jnt.2009.03.007
- Vladimir Anashin and Andrei Khrennikov, Applied algebraic dynamics, De Gruyter Expositions in Mathematics, vol. 49, Walter de Gruyter & Co., Berlin, 2009. MR 2533085, DOI 10.1515/9783110203011
- Matthew Baker and Laura DeMarco, Preperiodic points and unlikely intersections, Duke Math. J. 159 (2011), no. 1, 1–29. MR 2817647, DOI 10.1215/00127094-1384773
- Matthew Baker and Laura De Marco, Special curves and postcritically finite polynomials, Forum Math. Pi 1 (2013), e3, 35. MR 3141413, DOI 10.1017/fmp.2013.2
- Robert L. Benedetto, Dragos Ghioca, Benjamin Hutz, Pär Kurlberg, Thomas Scanlon, and Thomas J. Tucker, Periods of rational maps modulo primes, Math. Ann. 355 (2013), no. 2, 637–660. MR 3010142, DOI 10.1007/s00208-012-0799-8
- Mei-Chu Chang, On periods modulo $p$ in arithmetic dynamics, C. R. Math. Acad. Sci. Paris 353 (2015), no. 4, 283–285 (English, with English and French summaries). MR 3319121, DOI 10.1016/j.crma.2015.01.007
- Carlos D’Andrea, Teresa Krick, and Martín Sombra, Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 4, 549–627 (2013) (English, with English and French summaries). MR 3098424, DOI 10.24033/asens.2196
- C. D’Andrea, A. Ostafe, I. E. Shparlinski and M. Sombra, ‘Reductions modulo primes of systems of polynomial equations and algebraic dynamical systems’, Preprint, 2015 (see http://arxiv.org/1505.05814) to appear in Transactions of the American Mathematical Society, https://doi.org/10.1090/tran/7437
- Domingo Gomez, Jaime Gutierrez, Álvar Ibeas, and David Sevilla, Common factors of resultants modulo $p$, Bull. Aust. Math. Soc. 79 (2009), no. 2, 299–302. MR 2496933, DOI 10.1017/S0004972708001275
- Dragos Ghioca, Liang-Chung Hsia, and Thomas J. Tucker, Preperiodic points for families of polynomials, Algebra Number Theory 7 (2013), no. 3, 701–732. MR 3095224, DOI 10.2140/ant.2013.7.701
- D. Ghioca, L.-C. Hsia, and T. J. Tucker, Preperiodic points for families of rational maps, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 395–427. MR 3335283, DOI 10.1112/plms/pdu051
- Dragos Ghioca, Holly Krieger, and Khoa Nguyen, A case of the dynamical André-Oort conjecture, Int. Math. Res. Not. IMRN 3 (2016), 738–758. MR 3493432, DOI 10.1093/imrn/rnv143
- D. Ghioca, H. Krieger, K. D. Nguyen, and H. Ye, The dynamical André-Oort conjecture: unicritical polynomials, Duke Math. J. 166 (2017), no. 1, 1–25. MR 3592687, DOI 10.1215/00127094-3673996
- Dragos Ghioca, Khoa Nguyen, and Thomas J. Tucker, Portraits of preperiodic points for rational maps, Math. Proc. Cambridge Philos. Soc. 159 (2015), no. 1, 165–186. MR 3349337, DOI 10.1017/S0305004115000274
- Patrick Ingram, A finiteness result for post-critically finite polynomials, Int. Math. Res. Not. IMRN 3 (2012), 524–543. MR 2885981, DOI 10.1093/imrn/rnr030
- Sergei V. Konyagin and Igor E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Mathematics, vol. 136, Cambridge University Press, Cambridge, 1999. MR 1725241, DOI 10.1017/CBO9780511542930
- Teresa Krick, Luis Miguel Pardo, and Martín Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J. 109 (2001), no. 3, 521–598. MR 1853355, DOI 10.1215/S0012-7094-01-10934-4
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Joseph H. Silverman, Variation of periods modulo $p$ in arithmetic dynamics, New York J. Math. 14 (2008), 601–616. MR 2448661
Bibliographic Information
- Mei-Chu Chang
- Affiliation: Department of Mathematics, University of California. Riverside, California 92521
- Email: mcc@math.ucr.edu
- Carlos D’Andrea
- Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona. Gran Via 585, 08007 Barcelona, Spain
- MR Author ID: 652039
- Email: cdandrea@ub.edu
- Alina Ostafe
- Affiliation: School of Mathematics and Statistics, University of New South Wales. Sydney, NSW 2052, Australia
- MR Author ID: 884181
- Email: alina.ostafe@unsw.edu.au
- Igor E. Shparlinski
- Affiliation: School of Mathematics and Statistics, University of New South Wales. Sydney, NSW 2052, Australia
- MR Author ID: 192194
- Email: igor.shparlinski@unsw.edu.au
- Martín Sombra
- Affiliation: ICREA. Passeig Lluís Companys 23, 08010 Barcelona, Spain–and–Departament de Mat- emàtiques i Informàtica, Universitat de Barcelona. Gran Via 585, 08007 Barcelona, Spain
- MR Author ID: 621582
- Email: sombra@ub.edu
- Received by editor(s): February 27, 2017
- Received by editor(s) in revised form: June 28, 2017
- Published electronically: December 26, 2017
- Communicated by: Matthew A. Papanikolas
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2015-2025
- MSC (2010): Primary 37P05; Secondary 11G25, 11G35, 13P15, 37P25
- DOI: https://doi.org/10.1090/proc/13904
- MathSciNet review: 3767353