## Positive definite functions on the unit sphere and integrals of Jacobi polynomials

HTML articles powered by AMS MathViewer

- by Yuan Xu PDF
- Proc. Amer. Math. Soc.
**146**(2018), 2039-2048 Request permission

## Abstract:

For $\alpha , \beta \in \mathbb {N}_0$ and $\max \{\alpha ,\beta \} >0$, it is shown that the integrals of the Jacobi polynomials \begin{equation*}\int _0^t (t-\theta )^\delta P_n^{(\alpha -\frac 12,\beta -\frac 12)}(\cos \theta ) \left (\sin \tfrac {\theta }2\right )^{2 \alpha } \left (\cos \tfrac {\theta }2\right )^{2 \beta } d\theta > 0 \end{equation*} for all $t \in (0,\pi ]$ and $n \in \mathbb {N}$ if $\delta \ge \alpha + 1$ for $\alpha ,\beta \in \mathbb {N}_0$ and $\max \{\alpha ,\beta \} > 0$. This proves a conjecture on the integral of the Gegenbauer polynomials in a work of Beatson (2014) that implies the strictly positive definiteness of the function $\theta \mapsto (t - \theta )_+^\delta$ on the unit sphere $\mathbb {S}^{d-1}$ for $\delta \ge \lceil \frac {d}{2}\rceil$ and the Pólya criterion for positive definite functions on the sphere $\mathbb {S}^{d-1}$ for $d \ge 3$. Moreover, the positive definiteness of the function $\theta \mapsto (t - \theta )_+^\delta$ is also established on the compact two-point homogeneous spaces.## References

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions, with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1966. MR**0208797** - Richard Askey and James Fitch,
*Integral representations for Jacobi polynomials and some applications*, J. Math. Anal. Appl.**26**(1969), 411–437. MR**237847**, DOI 10.1016/0022-247X(69)90165-6 - V. S. Barbosa and V. A. Menegatto,
*Strictly positive definite kernels on compact two-point homogeneous spaces*, Math. Inequal. Appl.**19**(2016), no. 2, 743–756. MR**3458777**, DOI 10.7153/mia-19-54 - R. K. Beatson and W. zu Castell,
*One-step recurrences for stationary random fields on the sphere*, SIGMA Symmetry Integrability Geom. Methods Appl.**12**(2016), Paper No. 043, 19. MR**3491570**, DOI 10.3842/SIGMA.2016.043 - R. K. Beatson and W. zu Castell,
*Dimension hopping and families of strictly positive definite zonal basis functions on spheres*, J. Approx. Theory**221**(2017), 22–37. MR**3682052**, DOI 10.1016/j.jat.2017.04.001 - R. K. Beatson, Wolfgang zu Castell, and Yuan Xu,
*A Pólya criterion for (strict) positive-definiteness on the sphere*, IMA J. Numer. Anal.**34**(2014), no. 2, 550–568. MR**3194799**, DOI 10.1093/imanum/drt008 - Rafaela N. Bonfim and Valdir A. Menegatto,
*Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces*, J. Multivariate Anal.**152**(2016), 237–248. MR**3554789**, DOI 10.1016/j.jmva.2016.09.004 - Debao Chen, Valdir A. Menegatto, and Xingping Sun,
*A necessary and sufficient condition for strictly positive definite functions on spheres*, Proc. Amer. Math. Soc.**131**(2003), no. 9, 2733–2740. MR**1974330**, DOI 10.1090/S0002-9939-03-06730-3 - Feng Dai and Yuan Xu,
*Approximation theory and harmonic analysis on spheres and balls*, Springer Monographs in Mathematics, Springer, New York, 2013. MR**3060033**, DOI 10.1007/978-1-4614-6660-4 - Ramesh Gangolli,
*Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters*, Ann. Inst. H. Poincaré Sect. B (N.S.)**3**(1967), 121–226. MR**0215331** - George Gasper,
*Positive integrals of Bessel functions*, SIAM J. Math. Anal.**6**(1975), no. 5, 868–881. MR**390318**, DOI 10.1137/0506076 - George Gasper,
*Positive sums of the classical orthogonal polynomials*, SIAM J. Math. Anal.**8**(1977), no. 3, 423–447. MR**432946**, DOI 10.1137/0508032 - Tilmann Gneiting,
*Strictly and non-strictly positive definite functions on spheres*, Bernoulli**19**(2013), no. 4, 1327–1349. MR**3102554**, DOI 10.3150/12-BEJSP06 - Chunsheng Ma,
*Isotropic covariance matrix polynomials on spheres*, Stoch. Anal. Appl.**34**(2016), no. 4, 679–706. MR**3507186**, DOI 10.1080/07362994.2016.1170612 - V. A. Menegatto, C. P. Oliveira, and A. P. Peron,
*Strictly positive definite kernels on subsets of the complex plane*, Comput. Math. Appl.**51**(2006), no. 8, 1233–1250. MR**2235825**, DOI 10.1016/j.camwa.2006.04.006 - I. J. Schoenberg,
*Positive definite functions on spheres*, Duke Math. J.**9**(1942), 96–108. MR**5922**, DOI 10.1215/S0012-7094-42-00908-6 - Gabor Szegö,
*Orthogonal polynomials*, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR**0106295** - Yuan Xu and E. W. Cheney,
*Strictly positive definite functions on spheres*, Proc. Amer. Math. Soc.**116**(1992), no. 4, 977–981. MR**1096214**, DOI 10.1090/S0002-9939-1992-1096214-6 - Johanna Ziegel,
*Convolution roots and differentiability of isotropic positive definite functions on spheres*, Proc. Amer. Math. Soc.**142**(2014), no. 6, 2063–2077. MR**3182025**, DOI 10.1090/S0002-9939-2014-11989-7

## Additional Information

**Yuan Xu**- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- MR Author ID: 227532
- Email: yuan@uoregon.edu
- Received by editor(s): January 10, 2017
- Received by editor(s) in revised form: July 1, 2017
- Published electronically: October 30, 2017
- Additional Notes: The author was supported in part by NSF Grant DMS-1510296.
- Communicated by: Walter Van Assche
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 2039-2048 - MSC (2010): Primary 33C45, 33C50, 42A82, 60E10
- DOI: https://doi.org/10.1090/proc/13913
- MathSciNet review: 3767355