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Abstract. It has been known that the Sierpiński carpets can appear as the
Julia sets in the families of some rational maps. In this article we present a

criterion that guarantees the existence of the carpet Julia sets in some rational
maps having exactly one fixed (super-) attracting or parabolic basin. We show
that this criterion can be applied to some well-known rational maps such as
McMullen maps and Morosawa–Pilgrim family. Moreover, we give also some
special examples whose Julia sets are Sierpiński carpets.

1. Introduction

Let Ĉ be the Riemann sphere. According to [Why58], a set S ⊂ Ĉ is called a
Sierpiński carpet (carpet for short) if S is compact, connected, locally connected,
has empty interior, and has the property that the complementary domains are

bounded by pairwise disjoint simple closed curves. For any rational map f : Ĉ → Ĉ

with degree at least two, the Fatou set F (f) of f is defined as the maximal open

subset on Ĉ in which the sequence of the iterates {f◦n}n≥0 forms a normal family
in the sense of Montel. The Julia set J(f) of f is the complement of the Fatou set

in Ĉ. Each connected component of the Fatou set is called a Fatou component.
It was known that the Julia sets of all rational maps are compact and have

empty interior (if the Julia set is not equal to Ĉ; see [Mil06, Corollary 4.11]), and
in some cases (for example, when the rational maps are postcritically finite), the
Julia sets are also connected and locally connected. Hence an interesting question
on the topology of the Julia sets of the rational maps is: could a Julia set be a
Sierpiński carpet? The answer to this question is not trivial since it is not easy
to verify some conditions that a Sierpiński carpet should satisfy, especially the
properties that the boundaries of all Fatou components are simple closed curves
and that the intersection of the closure of any two Fatou components is empty.
Obviously, the Julia set of any polynomial cannot be a Sierpiński carpet. Indeed,
any polynomial f with deg(f) ≥ 2 has at infinity a superattracting fixed point and
the Julia set is its immediate basin of attraction (see [Mil06, Corollary 4.12]). If f
has a bounded Fatou component, then the closure of this component must intersect
with the closure of the basin of infinity. On the other hand, if f does not have any
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bounded Fatou components, then the boundary of the basin of infinity cannot be
a simple closed curve, and hence its Julia set is not a Sierpiński carpet.

For the carpet Julia sets of rational maps, the first example was found by Milnor
and Tan Lei [Mil93, Appendix F]. Their example was a quadratic rational map
with two periodic superattracting cycles where one of the periods is 3 and the
other one is 4. Later, in his Ph.D thesis Pilgrim found a carpet Julia set of a cubic
rational map [Pil94, §5.6] by considering the branched covering of the sphere to
itself. As the Julia sets of rational maps, the Sierpiński carpets appeared in many
items of literature from then on; for example, McMullen maps (see [DLU05]), the
Morosawa–Pilgrim family (see [Ste08]), and the generalized McMullen maps (see
[XQY14]).

One may wonder why the Sierpiński carpets attracted many people’s interest.
On the one hand, the appearance of the carpet Julia sets reveals the richness of
the dynamics of rational maps. In fact, how to classify the carpet Julia sets dy-
namically is still an open problem (one may refer to [DP09] for a partial answer
to this question). On the other hand, in geometry group theory, the quasisymmet-
ric equivalences of the Sierpiński carpets has been studied extensively since it was
partially motivated by the Kapovich–Kleiner conjecture [KK00]. Recently, the qua-
sisymmetric geometry of the carpet Julia sets has also been considered in [BLM16],
[QYZ14], and [QYY16].

In view of the fact that the previous proof methods for the existence of the carpet
Julia sets are different (indeed, each method works only for one special family of
rational maps), a natural question is: does there exist a general method to judge
whether a given rational map has a carpet Julia set? As a partial answer to this
question, we give a useful criterion in this article and hence shed some light on this
problem.

Theorem A. Let f be a rational map satisfying the following conditions:

(a) The Julia set of f is connected.
(b) There exist two different Fatou components U and V of f such that f(U) =

U and f−1(U) = U ∪ V .
(c) If W is a connected component of f−1(V ), then deg(f |W ) > deg(f |U ).
(d) The intersection of any critical orbit with U is nonempty. In particular, f

has degree at least 3.

Then the Julia set of f is a Sierpiński carpet.

From the assumptions (b) and (d) in Theorem A, all the critical points of f
are eventually iterated to the unique fixed Fatou component U , which is either
attracting, superattracting, or parabolic. The key of the proof of Theorem A is
to show that the immediate basin of the unique fixed Fatou component of f is a
Jordan domain.

We will give some examples to show that each of the assumptions in Theorem A
is necessary. Specifically, we prove that there exist rational maps whose Julia sets
are not Sierpiński carpets provided only three of four conditions in Theorem A are
satisfied. This means that our criterion in Theorem A has some kind of sharpness.

It seems that the condition (c) is a bit technical. Actually an intuitional idea
can be explained as follows: In order to prove that U is bounded by a simple closed

curve, we need to show that Ĉ \ U consists of exactly one connected component

first. Assume to the contrary that Ĉ \ U contains two different components AV
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and AW which contain V and W , respectively, where f(W ) = V . Since the local
degree cannot exceed the global degree, it means that deg(f |W ) ≤ deg(f |AW

) =
deg(f |∂AW

) ≤ deg(f |U ). However this violates condition (c) (see the proof of
Theorem A in §2 for details).

Let us give some applications of Theorem A. According to the assumptions in
Theorem A, we assume that deg(f |U : U → U) = d∞ and deg(f) = d0+d∞, where
d0 ≥ 1 and d∞ ≥ 2. Since f−1(U) = U ∪ V , we have deg(f |V : V → U) = d0.
By a standard quasiconformal surgery (based on the connectivity of the Julia sets),
one can assume that each of the Fatou components U and V contains at most one
critical point (counted without multiplicity). This means that U is a fixed super-
attracting basin or a parabolic basin. To simplify the expressions of the rational
maps, without loss of generality, we assume that f has a unique fixed superattract-
ing basin1 centered at ∞, f−1(∞) = {∞, 0}, and f−1(0) = {b1, . . . , bn}, where
n ≥ 1 and b1 = 1. This means that f has the form

(1) fλ(z) =
λ

zd0

n∏
i=1

(z − bi)
di ,

where
∑n

i=1 di = d0 + d∞, d0 ≥ 1, and λ, bi ∈ C \ {0}. Based on condition (c) in
Theorem A, we require further that di ≥ d∞ + 1 ≥ 3 for all 1 ≤ i ≤ n. As an
immediate corollary of Theorem A, we have the following.

Corollary 1.1. The Julia set of fλ is a Sierpiński carpet provided it is connected
and all critical points of fλ escape to infinity under iteration.

We would like to remind the reader that the different bi’s are not necessarily in
different Fatou components. Indeed, if bi and bj are contained in the same Fatou
component Wi, then

deg(f |Wi
: Wi → V ) ≥ di + dj ≥ d∞ + 1 = deg(f |U : U → U) + 1,

which still satisfies condition (c).
Let us consider the simplest case first. Set n = 1 in (1). This means that

d1 = d0 + d∞ ≥ 3 and the uni-parametric family fλ writes as

(2) Fλ(z) = λ
(z − 1)d0+d∞

zd0
, where λ ∈ C \ {0}.

Note that Fλ has the critical orbit 1
(d0+d∞)	−→ 0

(d0)	−→ ∞ (d∞)	−→ ∞ and a free critical
point zλ = − d0

d∞
with local degree 2. As an application of Corollary 1.1, we have

the following.

Proposition 1.2. The Julia set of Fλ is a Sierpiński carpet if zλ 
∈ V but F ◦k
λ (zλ)

∈ V for some k ≥ 2, where V is the Fatou component of Fλ containing 0.

According to [DLU05] and [Ste08], McMullen maps and Morosawa–Pilgrim fam-
ily, respectively, are defined by

(3) gμ(z) = zd∞ +
μ

zd0
and hν(z) = ν

(
1 +

4z3

27(1− z)

)
,

1Theorem A can be applied to the parabolic rational maps of course. But the main point here
is to give an application of a canonical family of hyperbolic rational maps. See §3.1 for an example
of a parabolic rational map with a carpet Julia set.
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where d0 ≥ 1, d∞ ≥ 2, and μ, ν ∈ C \ {0} are parameters. A straightforward
calculation shows that the map z 	→ − 1

μz
d0+d∞ semiconjugates gμ to Fλ with λ =

(−μ)d∞−1. Therefore, the free critical point zλ = − d0

d∞
of Fλ corresponds to d0+d∞

free critical points cj = ( d0

d∞
μ)1/(d0+d∞)e2πij/(d0+d∞) of gμ, where 1 ≤ j ≤ d0+ d∞.

On the other hand, hν has the critical orbits

3
2

(2)	−→ 0
(3)	−→ ν 	−→ · · · and ∞ (2)	−→ ∞.

As an immediate corollary of Proposition 1.2, we have the following result.

Corollary 1.3 (Devaney–Look–Uminsky, Steinmetz). Let Uμ (resp., Uν) be the
immediate superattracting basin of ∞ of gμ (resp., hν).

(a) If there exists an integer k ≥ 2 such that g◦kμ (cj) ∈ g−1
μ (Uμ) \ Uμ for some

1 ≤ j ≤ d0 + d∞, then the Julia set of gμ is a Sierpiński carpet.
(b) If ν ∈ h−1

ν (Uν) \ Uν , then the Julia set of hν is a Sierpiński carpet.

Let us move to a bit more complicated example. Set n = 2, d0 = 4, d∞ = 2, and
d1 = d2 = 3 in (1). We consider the following one-dimensional family of rational
maps:

Gc(z) =
a(z − 1)3(z − b)3

z4
, where a =

c(c− 4)3

27(c− 1)6
, b =

c(1 + 2c)

4− c
,

and c ∈ C \ {0, 1, 4,− 1
2} is the parameter. A direct calculation shows that Gc has

the critical orbits b
(3)	−→ 0

(4)	−→ ∞ (2)	−→ ∞, c
(2)	−→ 1

(3)	−→ 0 and a free critical point

zc =
2(1+2c)

c−4 with local degree 2. As another application of Corollary 1.1, we have
the following.

Proposition 1.4. The Julia set of Gc is a Sierpiński carpet if zc 
∈ U but G◦k
c (zc) ∈

U for some k ≥ 1, where U is the immediate superattracting basin of Gc at ∞.

In particular, if G◦k
c (zc) = 0 for some k ≥ 1, then Gc is postcritically finite and

the Julia set of Gc is connected and hence a Sierpiński carpet by Corollary 1.1. See
Figure 1 for the parameter plane of Gc and a carefully chosen Julia set.

Note that our criterion in Theorem A works only for the rational maps with ex-
actly one fixed Fatou component. Actually, there are many carpet Julia sets whose
corresponding Fatou sets have periodic Fatou components with period greater than
one. We refer the reader to [DFGJ14] for a comprehensive study on the existence of
carpet Julia sets in the quadratic rational maps. However, as far as we know, all the
carpet Julia sets constructed before correspond to the rational maps whose periodic
Fatou components have period one or at least period three. Indeed, in [DFGJ14]
the authors deal with the quadratic rational maps but the period is always larger
than or equal to 3. On the other hand, it has been proved in [AY09] that there are
no carpet Julia sets for quadratic rational maps with period 2 Fatou components
(and of course there are none with period 1 since they are conjugated to polyno-
mials). Hence a natural question is: Does there exist a carpet Julia set of higher
degree rational map whose corresponding Fatou set contains a Fatou component
with period 2? In this article we give an affirmative answer to this question.

Theorem B. There exists a family of cubic rational maps whose Julia sets are
Sierpiński carpets and whose Fatou sets contain Fatou components of period 2.
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Figure 1. Left: The parameter plane of Gc, where almost all of
the white “holes” correspond to the parameters such that the cor-
responding Julia sets are Sierpiński carpets (the exceptional cases
are the hyperbolic components containing 1 and −1/2 where the
parameters correspond to the disconnected Julia sets). Right: The

Julia set of Gc0 , where c0 = i
√
2 is chosen such that Gc0(zc0) = 1

and the Julia set of Gc0 is a Sierpiński carpet.

In fact, the Julia set of a rational map could be a Sierpiński carpet if it contains
some critical points. In particular, there exists an infinitely renormalizable rational
map whose Julia set is a Sierpiński carpet. For more details, see [QYZ14] and
[QYY16].

This article is organized as follows: In §2, we give the proofs of Theorem A and
Propositions 1.2 and 1.4. Then some specific examples will be analysed and used
to show the necessity of every assumption in Theorem A. In §3, we will give some
examples of special carpet Julia sets, such as a carpet Julia set with a parabolic
fixed point and a carpet Julia set with a periodic Fatou component with period 2,
and hence prove Theorem B.

2. Proofs of theorems and some examples

In this section, we first give the proofs of Theorem A and its applications, Propo-
sitions 1.2 and 1.4. Then we use some examples to show that all the conditions in
Theorem A are necessary.

2.1. Proofs of theorems. As stated in the introduction, in order to prove that a
Julia set is a Sierpiński carpet, the main point is to show that all the Fatou com-
ponents are bounded by pairwise disjoint simple closed curves (i.e., Jordan curves).
For Theorem A, our strategy is to show first that the fixed Fatou component U
is bounded by a Jordan curve. By taking preimages, one can obtain that all the
Fatou components are bounded by Jordan curves. Next we prove that U and its
preimage V are bounded by disjoint curves. The last step is to show that all the
Fatou components are bounded by pairwise disjoint curves.
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Proof of Theorem A. Suppose that f satisfies all the assumptions in Theorem A.
By (b) and (d), we know that all the critical points are contained in the Fatou set
of f , the Fatou component U is attracting, superattracting or parabolic, and this
is the unique periodic Fatou component of f . From [TY96] and by (a), the Julia
set of f is connected and locally connected. By (c), we have the forward orbit of
the Fatou components W → V → U → U under f . Without loss of generality, we
assume that ∞ ∈ U .

According to Torhorst’s theorem [Why42, p. 106], the boundary of each Fatou
component of f is locally connected. In particular, U is simply connected and ∂U
is locally connected. We claim that U is a Jordan domain, i.e., U is bounded by a

simple closed curve. According to [Pil96, Proposition 2.5], each component of Ĉ\U
is bounded by a Jordan curve. Let AV and AW be the connected components of

Ĉ \ U containing V and W , respectively, where W is a connected component of
f−1(V ). We claim that AV = AW . Assuming to the contrary that AV 
= AW , we

have f−1(U) = U ∪ V ⊂ U ∪ AV by (b) and hence f(AW ) ⊂ Ĉ \ U . Since AW is
a Jordan domain, f(AW ) is connected, and f(∂AW ) ⊂ ∂U , it follows that f(AW )

is exactly a component of Ĉ \ U . This means that f(AW ) = AV since f(W ) = V .
Then deg(f |W : W → V ) ≤ deg(f |∂AW

: ∂AW → ∂AV ) ≤ deg(f |∂U : ∂U → ∂U) =
deg(f |U : U → U). However, by condition (c) we have deg(f |W : W → V ) >
deg(f |U : U → U). This is a contradiction; hence we have AV = AW , and both V
and W are contained in AV . In particular, f−1(V ) is contained in AV . Now it is

easy to see that Ĉ \U consists of exactly one connected component AV . Indeed, if

Ĉ\U contains a component A′ 
= AV , then by (d) there exists an integer k ≥ 1 such
that f◦k(A′) = AV . This means that each point in V would have more than deg(f)

preimages, which is a contradiction. Although Ĉ \ U = AV is a Jordan domain, it
is still not enough to conclude that ∂U is a Jordan curve. We need to exclude the
existence of the “hairs” attaching on the boundary of AV .

Since ∂U is locally connected and ∂AV ⊂ ∂U , it means that each z ∈ ∂AV is
accessible from U . There exist two simple (open) arcs γ1, γ2 ⊂ U landing at z such
that γ1 and γ2 connect z with ∞ and γ1 ∩ γ2 = ∅. Then Γ := γ1 ∪ γ2 ∪ {z,∞}
divides Ĉ into two Jordan domains. Let A be the connected component of Ĉ \ Γ
such that A ∩ AV = ∅. Then {f◦n : n ∈ N} is a normal family in A since2 each
f◦n(A) does not take the values in V . This means that A is contained in the Fatou
set. By the arbitrariness of z and Γ, it means that ∂U = ∂AV and U is a Jordan
domain.

Since all the critical points are contained in the Fatou set of f , according to
[Pil96, Proposition 2.8], each preimage of U is a Jordan domain. By induction, we
know that all the Fatou components of f are Jordan domains.

It remains to prove that each pair of the boundaries of the Fatou components
are disjoint. To see this, suppose that z ∈ ∂U ∩ ∂V . Then there exists a simple
arc β ⊂ U without touching the critical values of f (they are finite in number) and
landing at f(z). Since f−1(U) = U ∪ V , it follows that f−1(β) has two connected
components, β1 ⊂ U and β2 ⊂ V , and both of them land at z. This means that
z is a critical point of f . From assumption (d), this is a contradiction. Hence
∂U ∩ ∂V = ∅.

2Note that A ∩ F (f) is contained in U , where F (f) is the Fatou set of f .
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Let α1 and α2, respectively, be the connected components of f−k(∂U) and
f−�(∂U) satisfying α1 
= α2, where k, � ∈ N. We claim that α1 ∩ α2 = ∅. Other-
wise, by iterating α1 and α2 forward several times, we conclude that ∂U ∩∂V 
= ∅ if
k 
= �, and ∂U contains a point in the critical orbit of f if k = �. However, neither
these two cases are possible. Therefore, the boundaries of the Fatou components
are pairwise disjoint. This completes the proof that the Julia set of f is a Sierpiński
carpet. �

Note that Propositions 1.2 and 1.4 are applications of Corollary 1.1. From the
assumptions in Propositions 1.2 and 1.4, it is sufficient to prove that the Julia sets
of Fλ and Gc are connected.

Proof of Proposition 1.2. Note that Fλ has a superattracting basin U centered at
infinity and it has the critical orbit 1 	→ 0 	→ ∞ 	→ ∞ and a free critical point
zλ = − d0

d∞
with local degree 2. Let V be the Fatou component of Fλ containing

0. Suppose that F ◦k
λ (zλ) ∈ V for some k ≥ 2 and zλ 
∈ V . We claim first that

U 
= V . If U = V , then F−1
λ (U) = U and U is completely invariant. From the

assumption F ◦k
λ (zλ) ∈ V = U for some k ≥ 2, we have zλ ∈ V , which contradicts

the assumption that zλ 
∈ V . This proves the claim that U 
= V .
Since zλ 
∈ U , it means that U is a superattracting basin containing exactly one

critical point ∞. We claim that U is simply connected. Indeed, let U0 be a small
simply connected neighborhood of ∞ such that Fλ(U0) ⊂ U0. We use U1 to denote
the component of F−1

λ (U0) containing U0. Inductively, let Un be the component

of F−n
λ (U0) containing U0 for all n ≥ 1. Since Fλ : Un+1 \ {0} → Un \ {0} is a

covering map for all n ∈ N, it follows that each Un is simply connected. Note that
U0 ⊂ U1 ⊂ U2 ⊂ · · · and U =

⋃
n∈N

Un. This means that U is simply connected.
We now prove that all the mth preimages of U are simply connected, where

m ∈ N. Since zλ 
∈ V , the map Fλ : V \ {0} → U \ {∞} is a covering map.
Therefore, V \ {0} is doubly connected and V is simply connected. Let W be the
Fatou component of Fλ containing 1. From the assumption that F ◦k

λ (zλ) ∈ V for
some k ≥ 2, we know that zλ 
∈ W and Fλ : W \ {1} → V \ {0} is also a covering
map. Therefore, W is also simply connected. In summary, we have zλ 
∈ U ∪V ∪W
and U , V , W are all simply connected. Applying Riemann–Hurwitz’s formula
inductively, it is easy to see all the mth preimages of W are simply connected,
where m ∈ N. Hence all the Fatou components of Fλ are simply connected and
J(Fλ) is connected. By Corollary 1.1, J(Fλ) is a Sierpiński carpet. �

The proof of Proposition 1.4 is similar to that of Proposition 1.2 although the
argument is slightly complicated. For completeness, we include a proof here.

Proof of Proposition 1.4. Let U be the superattracting basin of Gc centered at
infinity. Recall that Gc has the critical orbits b 	→ 0 	→ ∞ 	→ ∞ and c 	→ 1 	→ 0.

Suppose that G◦k
c (zc) ∈ U for some k ≥ 1 and zc 
∈ U , where zc = 2(1+2c)

c−4 is the
unique free critical point of Gc. Let V be the Fatou component of Gc containing
0. Similar to the proof of Proposition 1.2, we have that U 
= V and U is simply
connected.

We now prove that all the mth preimages of U are simply connected, where
m ∈ N. Applying Riemann–Hurwitz’s formula to Gc : V \{0} → U \{∞}, we know
that V \ {0} is doubly connected and zc 
∈ V . Therefore, V is simply connected.



2136 FEI YANG

Let W1 and Wb be the Fatou components containing 1 and b, respectively. There
are following two cases:

Case I (W1 = Wb). Then we have Gc : W1\{1, b} = W1\G−1
c (0) → V \{0}. If b 
= 1

(i.e., c 
= −2), then the Euler’s characteristic χ(W1\{1, b}) ≤ −1 since W1 
= Ĉ. By
Riemann–Hurwitz’s formula, W1 is simply connected and zc ∈ W1. If b = 1 (i.e.,
c = −2), then zc = 1 and we have Gc(W1 \ {1}) = V \ {0} and χ(W1 \ {1}) ≤ 0.
By Riemann–Hurwitz’s formula, W1 is also simply connected. Inductively, in both
cases, all the mth preimages of W1 are simply connected, where m ∈ N. Hence all
the Fatou components are simply connected and J(Gc) is connected.

Case II (W1 
= Wb). Then we have two different maps, Gc : W1 \ {1} → V \ {0}
and Gc : Wb \ {b} → V \ {0}. This means that W1 and Wb are simply connected,
zc 
∈ W1∪Wb, and the restrictions of Gc on W1 \{1} and Wb \{b} are both covering

maps. Since G◦k
c (zc) ∈ U , we have G

◦(k−2)
c (zc) ∈ W1 ∪Wb and k ≥ 3. Let Zc be

the Fatou component containing c. If zc 
∈ Zc, then it is easy to see that all the
mth preimages of W1 and Wb are simply connected, where m ∈ N. Hence J(Gc) is
connected. If zc ∈ Zc, then Gc(zc) ∈ W1. We have Gc : Zc \ G−1

c (1) → W1 \ {1}.
Note that zc ∈ Zc 
= Ĉ and c ∈ G−1

c (1). By Riemann–Hurwitz’s formula, it
means that the Euler characteristic χ(Zc \G−1

c (1)) = −1 and zc ∈ Zc \G−1
c (1) or

χ(Zc \G−1
c (1)) = 0 and zc = c. In both cases, Zc is simply connected. Inductively,

all the mth preimages of Wb and W1 are simply connected, where m ∈ N. Hence
all the Fatou components are simply connected and J(Gc) is connected.

�

2.2. The counterexamples. In this subsection, in order to verify that each of
the assumptions in Theorem A is necessary, we give some examples to show that
the corresponding Julia sets could not be Sierpiński carpets if only three of four
conditions in Theorem A are satisfied.

Example 1. We show that there exists a family of rational maps f1 satisfying
the conditions (b), (c), and (d) in Theorem A but where J(f1) is not a Sierpiński
carpet. Consider the McMullen maps

f1(z) = zd∞ + λ1/z
d0 ,

where 1/d0 +1/d∞ < 1 and λ1 ∈ C \ {0}. According to [DLU05], if λ1 
= 0 is small
enough, then there exist three different Fatou components U , V , and W such that
f1(U) = U , f−1

1 (U) = U ∪ V and f−1
1 (V ) = W , where U is the superattracting

basin centered at ∞ and V 
= U is the Fatou component containing the origin.
However, the Julia set of f1 is a Cantor set of circles, which is not connected and
hence not a Sierpiński carpet (see Figure 2, where d0 = d∞ = 3 and λ1 = 10−2).

Example 2. We now construct a rational map f2 satisfying the conditions (a), (c),
and (d) in Theorem A but where J(f2) is not a Sierpiński carpet. Let

f2(z) = − 3(3z − 4)

2z(2z − 3)2
.

The critical orbit of f2 is 1
(3)	−→ 3

2

(2)	−→ ∞ (2)	−→ 0
(1)	−→ ∞. Since f2 is postcritically

finite, the Julia set of f2 is connected. Let U , V , and W be the Fatou components
containing ∞, 3

2 , and 1 respectively. It is easy to see that f2 satisfies all the
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conditions in Theorem A except the second. By a straightforward calculation, one
can verify that the restriction of f2 on (−∞, 0) is strictly decreasing and it is a
homeomorphism to itself. Therefore, there exists a unique point ξ ∈ (−∞, 0) such
that f2(ξ) = ξ, which is repelling. This means that (−∞, ξ) ⊂ U and (ξ, 0) ⊂ Z,
where Z is the Fatou component containing 0. Hence J(f2) is not a Sierpiński
carpet since ξ ∈ U ∩ Z (see Figure 2).

Figure 2. The Julia sets of f1, f2, f3, and f4. The first Julia
set is not connected, and the latter three Julia sets do not satisfy
the property that all the boundaries of the Fatou components are
pairwise disjoint. None of these Julia sets are Sierpiński carpets.

Example 3. We show that there exists a rational map f3 satisfying the conditions
(a), (b), and (d) in Theorem A but where J(f3) is not a Sierpiński carpet. Let

f3(z) =
8(z − 1)2(z + 8)

27z
.

The critical orbit of f3 is 1
(2)	−→ 0

(1)	−→ ∞ (2)	−→ ∞ and −2
(3)	−→ −8

(1)	−→ 0
(1)	−→ ∞.

The Julia set of f3 is connected since it is postcritically finite. Let U , V , and W be
the Fatou components containing ∞, 0, and 1 respectively. We claim that U 
= V .
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If not, then U is completely invariant and all the critical points are contained in
U . This means that J(f3) is disconnected, which is a contradiction. Therefore, we
have U 
= V , f3(U) = U , and f−1

3 (U) = U ∪ V .
A direct calculation shows that f3 maps (−∞, 0), (0, 1) and (1,+∞) onto R,

(0,+∞) and (0,+∞), respectively, and the restrictions of f3 on these intervals are
strictly monotonous. One can verify that there exist three repelling fixed points
ξ1, ξ2, and ξ3 of f3 satisfying −8 < ξ1 < 0 < ξ2 < 1 < ξ3 < 4. Actually,
ξ1 = −5.57371629 · · · is a cut point of the Julia set of f3, and hence J(f3) is not a
Sierpiński carpet. One can refer to [FY15, Theorem 6.2] for the details of the proof
under a similar case (see Figure 2).

Example 4. Finally, we construct a rational map f4 satisfying the conditions (a),
(b), and (c) in Theorem A but where J(f4) is not a Sierpiński carpet. Consider the
map

f4(z) = λ4(z − 1)3/z,

where λ4 ∈ C \ {0}. The map f4 has the critical orbit 1
(3)	−→ 0

(1)	−→ ∞ (2)	−→ ∞
and a free critical point − 1

2 with local degree 2. Let U , V , and W be the Fatou

components containing ∞, 0, and 1 respectively. Then it is easy to see f−1
4 (U) =

U ∪ V , f−1
4 (V ) = W , and deg(f4|W : W → V ) = 3 > deg(f4|U : U → U) = 2.

If one chooses a special λ4 such that the free critical point − 1
2 is periodic under f4

and, further, such that f4 is “renormalizable”, then the Julia set of f4 could not be
a Sierpiński carpet. Indeed, let λ4 = 0.31661929 · · · such that f◦6

4 (−1/2) = −1/2
and the Julia set of f4 contains a copy of the “basilica” (i.e., the homeomorphic
image of the Julia set of z 	→ z2 − 1). It is well known that z 	→ z2 − 1 has two
bounded periodic Fatou components whose boundaries intersect at a point. This
means that the Julia set of J(f4) is connected but not a Sierpiński carpet (see
[Ste06, §6] and Figure 2).

3. Some special carpet Julia sets

In this section, we construct some special carpet Julia sets. The first one is a
carpet Julia set with a parabolic fixed point and the second is a carpet Julia set
whose corresponding Fatou set contains a Fatou component with period 2.

3.1. A parabolic carpet Julia set. Let

g�(z) =
b

3
· 3z

2 + 3az − �a

(z − �)3
,

where

a = − 3(2 + �)

9− 4�+ �2
, b =

(1− �)2(9− 4�+ �2)

3− 2�
with � 
= 0, 1,

3

2

are chosen such that g�(1) = 1 and g′�(1) = 1, i.e., g� has a parabolic fixed point at
1 with multiplier 1. A direct calculation shows that the critical orbits of g� are

�
(3)	−→ ∞ (1)	−→ 0

(2)	−→ · · · and z� := −2�− 2a
(2)	−→ · · · .

Proposition 3.1. The Julia set of g� is a Sierpiński carpet if z� 
∈ W but g◦k� (z�) ∈
W for some k ≥ 1, where W is the Fatou component containing �. In particular,
if �0 = 18, then the Julia set of g�0

is a Sierpiński carpet.
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Proof. The proof of the first statement is similar to that of Propositions 1.2 and
1.4. Suppose that z� 
∈ W but g◦k� (z�) ∈ W for some k ≥ 1. Then g� has a
parabolic basin U containing the critical point 0 with the parabolic fixed point 1
on its boundary. Let V be the Fatou component containing ∞. We claim first that
U 
= V . Suppose that U = V . Then V = W since otherwise each z ∈ U has at
least 2 preimages in U and 3 preimages in W (counted with multiplicity), which is
a contradiction. Since g−1

� (∞) = �, it means that U is completely invariant under

g�. From the assumption that g◦k� (z�) ∈ W = U for some k ≥ 1, we have z� ∈ U ,
which contradicts the assumption that z� 
∈ W . This proves the claim that U 
= V .
Therefore, we have V 
= W , and the critical points � and z� are not contained
in U . Since the immediate parabolic basin U contains exactly one critical point
0, it follows that U is simply connected. By Riemann–Hurwitz’s formula, all the
preimages of U are also simply connected. Hence J(g�) is connected and it is a
Sierpiński carpet by Theorem A.

If �0 = 18, we have

g�0
(z) = −289 (87z2 − 20z + 120)

11 (z − 18)3
.

A direct calculation shows that g◦3�0
(z�0

) ∈ (0, 1), where z�0
= −3092/87 is a critical

point of g�0
. One can easily verify that g�0

([0, 1]) ⊂ [1/2, 1] and g�0
is increasing

strictly on [0, 1]. This means that all the critical points are attracted by the par-
abolic basin of 1. Therefore, in order to prove that J(g�0

) is a Sierpiński carpet,
it is sufficient to prove that it is connected or, equivalently, to prove that the im-
mediate parabolic basin of 1 is simply connected. For this, we define an oval disk
B := {z = x + yi ∈ C : (x+1.5

4.5 )2 + ( y
5.4 )

2 < 1} and let A be the component of

C \ g�0
(∂B) containing the origin. One can check that B is compactly contained in

A. (This requires some numerical calculations for which we omit the details here.
Compare [Ste06, §6] and see the picture in Figure 3 on the left.) Shrinking the
domain A a little if necessary, we assume that A is bounded by a simple closed
curve. Let B′ be the component of g−1

�0
(A) containing 0. Then (g�0

, B′, A) is a
polynomial-like mapping with degree 2 (see the definition in [DH85]). In particu-
lar, g�0

contains a homeomorphic copy of the Julia set of z 	→ z2 + 1
4 . This means

that the immediate parabolic basin of 1 is simply connected and the Julia set of
g�0

is a Sierpiński carpet. �

3.2. A carpet Julia set with Fatou components of period 2. In this subsec-
tion we construct a carpet Julia set of a cubic rational map with Fatou components
of period 2. Let

hα(z) =
3α− 1

α2
· z

2 − 3αz + α

z2(z − β)
, where β = 3− 1

α
and α 
= 0,

1

3
,
1

2
.

A straightforward calculation shows that the critical orbits of hα are

1
(3)	−→ β

(1)	−→ ∞ (1)	−→ 0
(2)	−→ ∞ and zα := 6α− 2

(2)	−→ · · · .
Therefore, hα has a periodic superattracting orbit with period 2.

Proposition 3.2. Let α0 = (1−
√
33)/12 = −0.39538022 · · · such that hα0

(zα0
) =

1. Then the Julia set of hα0
is a Sierpiński carpet.
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Figure 3. The Julia sets of g�0
and hα0

, where �0 = 18 and

α0 = (1−
√
33)/12 are chosen such that g�0

has a parabolic fixed
point and hα0

has a Fatou component with period 2. Both Julia
sets are Sierpiński carpets. In order to show that some periodic
Fatou components are simply connected, both pictures depict the
candidates of the domains and the ranges of the polynomial-like
mappings.

Proof. Since hα0
is postcritically finite and hyperbolic, the Julia set of hα0

is con-
nected and locally connected. In order to prove that J(hα0

) is a Sierpiński carpet,
it is sufficient to prove that each Fatou component is bounded by a simple closed
curve and all the boundaries of the Fatou components are pairwise disjoint. The
proof will be based on a similar argument as in Proposition 3.1. We define a round
disk B := {z = x+yi ∈ C : |z| < 1/10} and let A be the component of C\h◦2

α0
(∂B)

containing the origin. One can check that B is compactly contained in A and
B ∩ hα0

(B) = ∅. (Similarly, we omit the details of the numerical calculations here.
See the picture in Figure 3 on the right.) Shrinking the domain A a little if neces-
sary, we assume that A is a Jordan domain. Let B′ be the component of h−2

α0
(A)

containing the origin. Then (hα0
, B′, A) is a polynomial-like mapping with degree

2.
Let U and V be the Fatou components containing ∞ and 0, respectively. Ac-

cording to the Straightening Theorem of Douady and Hubbard [DH85], we know
that V is a Jordan domain. Since all the Fatou components will be iterated to the
cycle of the periodic Fatou components U ↔ V and the Julia set hα0

is connected,
it follows that all the Fatou components are Jordan domains [Pil96, Proposition
2.8]. Since B ∩ hα0

(B) = ∅, it means that B ∩ U = ∅. By an argument similar to
the proof of Theorem A, all the boundaries of the Fatou components are pairwise
disjoint. Hence the Julia set of hα0

is a Sierpiński carpet. �
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