HOMEOMORPHISMS OF ČECH-STONE REMAINDERS: THE ZERO-DIMENSIONAL CASE

ILIJAS FARAH AND PAUL MCKENNEY
(Communicated by Mirna Džamonja)

Abstract

We prove, using a weakening of the Proper Forcing Axiom, that any homemomorphism between Čech-Stone remainders of any two locally compact, zero-dimensional Polish spaces is induced by a homeomorphism between their cocompact subspaces.

1. Introduction

The Čech-Stone remainder (also known as corona) $\beta X \backslash X$ of a topological space X will be denoted X^{*}. A continuous map $\varphi: X^{*} \rightarrow Y^{*}$ is called trivial if there is a continuous $e: X \rightarrow Y$ such that $\varphi=e^{*}$, where $e^{*}=\beta e \backslash e$ and βe is the unique continuous extension of e to βX. It follows that two remainders X^{*} and Y^{*} are homeomorphic via a trivial map if and only if there are cocompact subspaces of X and Y which are themselves homeomorphic. In this paper we prove the following (see Section 2 for the definitions).

Theorem 1.1. $O C A$ and $M A_{\aleph_{1}}$ together imply that every homeomorphism between Čech-Stone remainders of locally compact, zero-dimensional, Polish spaces is trivial.

This proves a special case of the rigidity conjecture that forcing axioms imply all homeomorphisms between Čech-Stone remainders of locally compact, noncompact Polish spaces are trivial (see [10, [9, [3]). In contrast, the Continuum Hypothesis (CH), implies that Čech-Stone remainders of locally compact, noncompact, zero-dimensional Polish spaces are homeomorphic. This is a consequence of Parovičenko's topological characterization of ω^{*} (see, e.g., [25]). Stone duality between compact, zero-dimensional, Hausdorff spaces and Boolean algebras of their clopen sets provides a model-theoretic reformulation of this malleability phenomenon. For a locally compact, non-compact Hausdorff space X let $\mathcal{C}(X)$ denote the algebra of the clopen subsets of X and let $\mathcal{K}(X)$ denote its ideal of compact-open sets. If X and Y are in addition zero-dimensional, then continuous maps from X^{*} to Y^{*} functorially correspond to Boolean algebra homomorphisms from $\mathcal{C}(Y) / \mathcal{K}(Y)$ into $\mathcal{C}(X) / \mathcal{K}(X)$. All of these algebras are elementarily equivalent and (assuming CH) saturated, and therefore isomorphic (see [6] for the details and an extension to not necessarily zero-dimensional spaces) 】

[^0]Back to rigidity, Theorem 1.1 belongs to a long line of results going back to Shelah's groundbreaking construction of an oracle-cc forcing extension of the universe in which all autohomeomorphisms of ω^{*} are trivial ([22]). Shelah's proof was recast in terms of forcing axioms PFA and OCA $+\mathrm{MA}_{\aleph_{1}}$ in [23] and [27], respectively. The latter axiom also implies that homeomorphisms between Čech-Stone remainders between countable locally compact spaces, as well as their arbitrary powers, are trivial ($[9, \S 4])$ as well as strong negations of Parovičenko's theorem ([5, 7]).

The interest in quotient rigidity results was rejuvenated by the discovery that the noncommutative analogue of 'are all automorphisms of ω^{*} (or of $\mathcal{P}(\omega) /$ fin) trivial?' was a prominent open problem in the theory of operator algebras. Motivated by their work on analytic K-homology, Brown, Douglas, and Fillmore asked whether the Calkin algebra associated with the separable, infinite-dimensional, complex Hilbert space has outer automorphisms ([2]). Like its commutative analogue, this question cannot be resolved in ZFC, with CH and OCA implying the opposite answers ([21, [11). Other rigidity results in the setting of C^{*}-algebras were proved for reduced products of the form $\prod_{n} A_{n} / \bigoplus_{n} A_{n}$ in the case when all A_{n} are matrix algebras ([16, [15]), separable UHF algebras ([19]), or unital separable nuclear C^{*} algebras (28, [20]).

A general rigidity conjecture for corona C^{*}-algebras was stated and partially verified in [3]. The model theory of coronas proved to be a bit more complex than that of Boolean algebras. While the reduced products are countably saturated ([14), coronas possess only a modest degree of saturation ([12], [8, [30, [13]). In return, C^{*}-algebras provided a vantage point that resulted in the construction of nontrivial autohomeomorphisms of X^{*} for every noncompact, locally compact, metrizable manifold using CH ([29]) ${ }^{2}$

We note that Theorem 1.1 is not optimal. The first author's proof that all zerodimensional, locally compact, Polish spaces satisfy the weak extension principle (9, Theorem 4.10.1]) will appear elsewhere. Dow refuted the related strong extension principle (9 , Question 4.11.4]) by constructing a nontrivial continuous map from ω^{*} into ω^{*} (i.e., one that does not have a continuous extension to a map from $\beta \omega$ into $\beta \omega$) in ZFC (4). An alternative proof of our main result from a stronger assumption (PFA) is given in [14, Theorem 4.3].

In Section 2 we introduce some of the language required to prove Theorem 1.1. Section 3 treats embeddings of $\mathcal{P}(\omega) /$ fin into $\mathcal{C}(X) / \mathcal{K}(X)$, and we show that under OCA $+\mathrm{MA}_{\aleph_{1}}$, every such embedding is trivial. Much of the proof follows the work in [27] and [26] with only minor modifications, so to avoid treading the same ground we only prove one of the ingredients going into this theorem. Section 4 completes the proof of Theorem 1.1 through an analysis of coherent families of continuous functions.

2. Notation

Our terminology is standard (see [18]). The assumption of Theorem 1.1] is a consequence of the Proper Forcing Axiom, PFA. OCA abbreviates the Open Coloring Axiom ($\widehat{24}$; not to be confused with the eponymous OCA of [1]), and $\mathrm{MA}_{\aleph_{1}}$ refers to Martin's Axiom for \aleph_{1} dense sets.

If E is a set, then $[E]^{2}$ will denote the set of unordered pairs from E. If $M \subseteq[E]^{2}$, then a set $H \subseteq E$ is called M-homogeneous if $[H]^{2} \subseteq M$. The Open Coloring Axiom

[^1]states: for every separable metric space E and every partition $[E]^{2}=M_{0} \cup M_{1}$ such that M_{0} is open (here we identify $[E]^{2}$ with a symmetric subset of $E \times E$ minus the diagonal), either
(1) there is an uncountable M_{0}-homogeneous set, or
(2) there is a cover of E by countably-many M_{1}-homogeneous sets.

We fix a zero-dimensional, locally compact and noncompact Polish space X. Let $\left\langle K_{n} \mid n<\omega\right\rangle$ be an increasing sequence of compact-open sets in X, such that $X=\bigcup K_{n}$. Then $\mathcal{K}(X)$ is generated by $\left\langle K_{n} \mid n<\omega\right\rangle$ since

$$
K \in \mathcal{K}(X) \Longleftrightarrow \exists n K \subseteq K_{n} .
$$

It is easy to see that $\mathcal{C}(X)$ has size continuum, whereas $\mathcal{K}(X)$ is countable. When $A, B \in \mathcal{C}(X)$ are distinct, we write $\delta(A, B)$ for the least n such that $A \cap X_{n} \neq B \cap X_{n}$. If

$$
d(A, B)= \begin{cases}2^{-\delta(A, B)}, & A \neq B \\ 0, & A=B\end{cases}
$$

then d is a Polish metric on $\mathcal{C}(X)$.
Let $X_{0}=K_{0}$ and $X_{n+1}=K_{n+1} \backslash K_{n}$. We will often identify $\mathcal{C}(X)$ with $\prod_{n} \mathcal{C}\left(X_{n}\right)$, and $\mathcal{P}(\omega)$ with ${ }^{\omega} 2$. Under these identifications, $\mathcal{K}(X)$ maps to $\bigoplus_{n} \mathcal{C}\left(X_{n}\right)$ (the set of functions in $\prod_{n} \mathcal{C}\left(X_{n}\right)$ which are nonempty on only finitely many coordinates) and fin to ${ }^{<\omega} 2$. If Y and Z are zero-dimensional, locally compact Polish spaces, $\varphi: \mathcal{C}(Y) / \mathcal{K}(Y) \rightarrow \mathcal{C}(Z) / \mathcal{K}(Z)$ is a homomorphism, and $U \in \mathcal{C}(Y)$, then we write $\varphi \backslash U$ for the restriction $\varphi \backslash \mathcal{C}(U) / \mathcal{K}(U)$. When working with the quotient $\mathcal{C}(X) / \mathcal{K}(X)$ we will write $[A]$ for the equivalence class of some $A \in \mathcal{C}(X)$.

3. Embeddings of $\mathcal{P}(\omega) /$ fin into $\mathcal{C}(X) / \mathcal{K}(X)$

Let $e: X \rightarrow \omega$ be a continuous map. If $e^{-1}(n)$ is compact for every n, then we say e is compact-to-one. If e is compact-to-one, then the map $a \mapsto e^{-1}(a)$, from $\mathcal{P}(\omega)$ to $\mathcal{C}(X)$, induces a homomorphism $\varphi_{e}: \mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{C}(X) / \mathcal{K}(X)$. Moreover, φ_{e} is injective if and only if e is bounded on compact sets. We call a homomorphism $\varphi: \mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{C}(X) / \mathcal{K}(X)$ trivial if it is of the form φ_{e} for some compact-to-one, continuous e.

In this section we prove
Theorem 3.1. Assume $O C A+M A_{\aleph_{1}}$, and suppose

$$
\varphi: \mathcal{P}(\omega) / \text { fin } \rightarrow \mathcal{C}(X) / \mathcal{K}(X)
$$

is an injective homomorphism. Then φ is trivial.
Working towards the proof of Theorem 3.1] we fix an injective homomorphism $\varphi: \mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{C}(X) / \mathcal{K}(X)$ and we define

$$
\mathcal{I}=\{a \subseteq \omega \mid \varphi \upharpoonright a \text { is trivial }\} .
$$

Note that \mathcal{I} is an ideal on ω.
A family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is called almost disjoint if for all distinct $a, b \in \mathcal{A}, a \cap b={ }^{*} \emptyset$. Such a family \mathcal{A} is called treelike if there is some tree T on ω and a bijection $t: \omega \rightarrow{ }^{<\omega} \omega$ under which each $a \in \mathcal{A}$ corresponds to a branch through T, and vice versa. The following lemma is proven in [27.

Lemma 3.2. Assume $M A_{\aleph_{1}}$. Then for every uncountable almost-disjoint family \mathcal{A} of subsets of ω we may find an uncountable $\mathcal{B} \subseteq \mathcal{A}$ and partitions $b=b_{0} \cup b_{1}$ for $b \in \mathcal{B}$ such that each family $\mathcal{B}_{i}=\left\{b_{i} \mid b \in \mathcal{B}\right\}$ is treelike.

The following three lemmas do not directly follow from the work in [27], but their proofs are nearly the same, modulo some minor modifications. Recall that an ideal $\mathcal{J} \subseteq \mathcal{P}(\omega)$ is a P-ideal if for each countable sequence $A_{n} \in \mathcal{J}(n<\omega)$ there is an $A \in \mathcal{J}$ such that for all $n<\omega, A_{n} \subseteq^{*} A$.

Lemma 3.3. Assume $O C A+M A_{\aleph_{1}}$. If \mathcal{I} is a dense P-ideal, then φ is trivial.
Lemma 3.4. Assume $\mathfrak{b}>\aleph_{1}$. If \mathcal{I} is not a dense P-ideal, then there is an uncountable almost disjoint family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ which is disjoint from \mathcal{I}.
Lemma 3.5. Assume OCA. Let \mathcal{A} be an uncountable, treelike, almost-disjoint family of subsets of ω. Then $\mathcal{I} \backslash \mathcal{A}$ is countable.

Theorem 3.1 now follows from a straightforward combination of Lemmas 3.2, 3.3. 3.4, and 3.5. To illustrate the kind of modifications necessary in translating from [27], we will give a proof of Lemma 3.3 ,

Proof of Lemma 3.3. For each $a \in \mathcal{I}$, we fix $Z_{a} \in \mathcal{C}(X)$ and a continuous, compact-to-one map $e_{a}: Z_{a} \rightarrow a$ such that $\varphi([a])=\left[Z_{a}\right]$ and for all $b \subseteq a, \varphi([b])=\left[e_{a}^{-1}(b)\right]$. We define $f_{a}: \omega \rightarrow \mathcal{C}(X)$ by

$$
f_{a}(n)=e_{a}^{-1}(\{n\}) .
$$

Define a partition $[\mathcal{I}]^{2}=M_{0} \cup M_{1}$ by placing $\{a, b\} \in M_{0}$ if and only if there is some $n \in a \cap b$ such that $f_{a}(n) \neq f_{b}(n)$. Then M_{0} is open when \mathcal{I} is given the topology obtained by identifying $a \in \mathcal{I}$ with $\left(a, f_{a}\right) \in \mathcal{P}(\omega) \times{ }^{\omega} \mathcal{C}(X)$.
Claim 3.6. There is no uncountable, M_{0}-homogeneous subset H of \mathcal{I}.
Proof. Assume H is such a set, and that $|H|=\aleph_{1}$. Since \mathcal{I} is a P-ideal, there is a set $\bar{H} \subseteq \mathcal{I}$ such that for every $a \in H$ there is some $b \in \bar{H}$ with $a \subseteq^{*} b$, and moreover \bar{H} is a chain of order-type ω_{1} with respect to \subseteq^{*}. By OCA, there is an uncountable subset of \bar{H} which is homogeneous for one of the two colors M_{0} and M_{1}; hence, by passing to this subset, we may assume \bar{H} is either M_{0} or M_{1} homogeneous.

Say \bar{H} is M_{1}-homogeneous. Put $\bar{a}=\bigcup \bar{H}$, and $\bar{f}=\bigcup_{a \in \bar{H}} f_{a}$. Then $\bar{f}: \bar{a} \rightarrow$ $\mathcal{C}(X)$, and for all $a \in H$ we have $a \subseteq^{*} \bar{a}$ and $f_{\bar{a}} \upharpoonright(a \cap \bar{a})=^{*} f_{a} \upharpoonright(a \cap \bar{a})$. Choose n so that for uncountably many $a \in H$, we have $a \backslash n \subseteq \bar{a}$, and $f_{\bar{a}} \upharpoonright a \backslash n=f_{a} \upharpoonright a \backslash n$. Then if $a, b \in H$ are such, and $f_{a} \upharpoonright n=f_{b} \upharpoonright n$, we have $\{a, b\} \in M_{1}$, a contradiction.

So \bar{H} is M_{0}-homogeneous. Define a poset \mathbb{P} as follows. Put $p \in \mathbb{P}$ if and only if $p=\left(A_{p}, m_{p}, H_{p}\right)$ where $m_{p}<\omega, A_{p} \in \mathcal{C}\left(K_{m_{p}}\right)$, and $H_{p} \in[\bar{H}]^{<\omega}$, and for all distinct $a, b \in H_{p}$, there is an $n \in a \cap b$ such that

$$
\neg\left(f_{a}(n) \cap A_{p}=\emptyset \Longleftrightarrow f_{b}(n) \cap A_{p}=\emptyset\right)
$$

That is, one of $f_{a}(n), f_{b}(n)$ is disjoint from A_{p}, and the other isn't. Put $p \leq q$ if and only if $m_{p} \geq m_{q}, A_{p} \cap K_{m_{q}}=A_{q}$, and $H_{p} \supseteq H_{q}$.

First we must show that \mathbb{P} is ccc. Suppose \mathcal{X} is an uncountable subset of \mathbb{P}. We may assume without loss of generality that for some fixed m and $A \in \mathcal{C}\left(K_{m}\right)$, and for all $p \in \mathcal{X}, m_{p}=m$ and $A_{p}=A$, and moreover that H_{p} is the same size for all $p \in \mathcal{X}$. Let a_{p} be the minimal element of H_{p} under \subseteq^{*}, for each $p \in \mathcal{X}$. Find n_{p} so that for all $a \in H_{p}$,

$$
f_{a_{p}} \upharpoonright\left(a_{p} \backslash n_{p}\right) \subseteq f_{a}, \quad e_{a_{p}}^{\prime \prime} K_{m} \subseteq n_{p}
$$

We may assume that for some fixed n, we have $n_{p}=n$ for all $p \in \mathcal{X}$. Find $p, q \in \mathcal{X}$ with $f_{a_{p}} \upharpoonright n=f_{a_{q}} \upharpoonright n$. Since $\left\{a_{p}, a_{q}\right\} \in M_{0}$, there is some $k \in a_{p} \cap a_{q}$ such that
$f_{a_{p}}(k) \neq f_{a_{q}}(k)$. Then $k \geq n$, and so $f_{a_{p}}(k) \cap K_{m}=f_{a_{q}}(k) \cap K_{m}=\emptyset$. At least one of $f_{a_{p}}(k) \backslash f_{a_{q}}(k)$ and $f_{a_{q}}(k) \backslash f_{a_{p}}(k)$ must be nonempty; whichever one it is, call it B. Put $A_{r}=A \cup B$ and $H_{r}=H_{p} \cup H_{q}$, and choose m_{r} large enough that $A_{r} \subseteq K_{m_{r}}$. Then $r=\left(A_{r}, m_{r}, H_{r}\right) \in \mathbb{P}$, and $r \leq p, q$.

By $\mathrm{MA}_{\aleph_{1}}$, there is a set $A \in \mathcal{C}(X)$ and an uncountable $H^{*} \subseteq \bar{H}$ such that for all distinct $a, b \in H^{*}$,

$$
\exists n \in a \cap b, \quad \neg\left(f_{a}(n) \cap A=\emptyset \Longleftrightarrow f_{b}(n) \cap A=\emptyset\right) .
$$

Fix $x \subseteq \omega$ such that $F(x)=A$. Then for all $a \in H^{*}, e_{a}^{-1}(x \cap a) \Delta(A \cap F(a))$ is compact; hence there are k_{a} and m_{a} such that

$$
e_{a}^{-1}\left(x \cap a \backslash k_{a}\right)=(A \cap F(a)) \backslash K_{m_{a}} \quad \text { and } \quad e_{a}^{-1}\left(a \backslash k_{a}\right)=F(a) \backslash K_{m_{a}} .
$$

Then, for all $n \in a \backslash k_{a}, n \in x$ implies $f_{a}(n) \subseteq A$, and $n \notin x$ implies $f_{a}(n) \cap A=\emptyset$. Fix distinct $a, b \in H^{*}$ with $k_{a}=k_{b}=k$, and $f_{a} \upharpoonright k=f_{b} \upharpoonright k$. Then,

$$
\forall n \in a \cap b\left(f_{a}(n) \cap A=\emptyset \Longleftrightarrow f_{b}(n) \cap A=\emptyset\right) .
$$

This contradicts the choice of A.
By OCA, there is a cover of \mathcal{I} by countably many sets \mathcal{I}_{n}, each of which is M_{1}-homogeneous. Since \mathcal{I} is a P-ideal, at least one of the \mathcal{I}_{n} 's must be cofinal in \mathcal{I} with respect to \subseteq^{*}. Choose such an \mathcal{I}_{n}, and let $f=\bigcup\left\{f_{a} \mid a \in \mathcal{I}_{n}\right\}$. Then f is a function from some subset of ω to $\mathcal{C}(X)$. Setting $e(x)=n$ if and only if $x \in f(n)$, we get a function $e: X \rightarrow \omega$, and since \mathcal{I} is dense and \mathcal{I}_{n} cofinal in $\mathcal{I}, a \mapsto e^{-1}(a)$ witnesses that φ is trivial.

4. Coherent families of continuous functions

Theorem 4.1. Assume $O C A+M A_{\aleph_{1}}$. Let X and Y be zero-dimensional, locally compact Polish spaces, and let $\varphi: \mathcal{C}(Y) / \mathcal{K}(Y) \rightarrow \mathcal{C}(X) / \mathcal{K}(X)$ be an isomorphism. Then there are compact-open $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism e : $X \backslash K \rightarrow Y \backslash L$, such that for all $A \in \mathcal{C}(Y \backslash L), \varphi([A])=\left[e^{-1}(A)\right]$.

By Stone duality, a homeomorphism $\varphi: X^{*} \rightarrow Y^{*}$ induces an isomorphism $\hat{\varphi}: \mathcal{C}(Y) / \mathcal{K}(Y) \rightarrow \mathcal{C}(X) / \mathcal{K}(X)$, and any map e as in the conclusion to Theorem4.1 will in this case be a witness to the triviality of φ. Hence Theorem 4.1 implies Theorem [1.1 Before proving Theorem 4.1 we note a corollary involving definable isomorphisms.

Corollary 4.2. Suppose X and Y are zero-dimensional, locally compact, Polish spaces, and $\varphi: \mathcal{C}(Y) / \mathcal{K}(Y) \rightarrow \mathcal{C}(X) / \mathcal{K}(X)$ is an isomorphism such that the set

$$
\Gamma=\{(A, B) \in \mathcal{C}(Y) \times \mathcal{C}(X) \mid \varphi([A])=[B]\}
$$

is Borel. Then φ is trivial.
Proof of Corollary 4.2, The fact that φ is an isomorphism between $\mathcal{C}(Y) / \mathcal{K}(Y)$ and $\mathcal{C}(X) / \mathcal{K}(X)$ can be written as a Π_{2}^{1} statement using Γ; hence by Schoenfield absoluteness, if $V^{\mathbb{P}}$ is a forcing extension satisfying OCA $+\mathrm{MA}_{\aleph_{1}}$ (see [24]), then in $V^{\mathbb{P}}$ the map $\bar{\varphi}: \mathcal{C}(Y) / \mathcal{K}(Y) \rightarrow \mathcal{C}(X) / \mathcal{K}(X)$, defined from the reinterpretation of Γ in $V^{\mathbb{P}}$, is also an isomorphism. By Theorem 4.1, then, we have in $V^{\mathbb{P}}$ that

$$
\exists e \in C(X, Y) \forall A \in \mathcal{C}(Y) \bar{\varphi}([A])=\left[e^{-1}(A)\right]
$$

where $C(X, Y)$ denotes the space of continuous maps from X to Y. This can be written as a $\boldsymbol{\Sigma}_{2}^{1}$ statement and so by Schoenfield absoluteness again, it must be true in V with φ replacing $\bar{\varphi}$.

Before the proof of Theorem 4.1 we set down some more notation. Fix X, Y and φ as in the statement of the theorem. Let L_{n} be an increasing sequence of compact subsets of Y, with union Y, and let $Y_{n+1}=L_{n+1} \backslash L_{n}$ and $Y_{0}=L_{0}$. Let \mathcal{B} be a countable base for Y consisting of compact-open sets, such that

- for all $U \in \mathcal{B}$, the set of $V \in \mathcal{B}$ with $V \supseteq U$ is finite and linearly ordered by \subseteq, and
- for all $U \in \mathcal{B}$ and all $n<\omega$, either $U \subseteq Y_{n}$ or $U \cap Y_{n}=\emptyset$.

It follows that for all $U, V \in \mathcal{B}$, either $U \cap V=\emptyset, U \subseteq V$, or $V \subseteq U$. Let \mathbb{P} be the poset of all partitions of Y into elements of \mathcal{B}, ordered by refinement;

$$
P \prec Q \Longleftrightarrow \forall U \in P \exists V \in Q \quad U \subseteq V .
$$

We also use \prec^{*} to denote eventual refinement;

$$
P \prec^{*} Q \Longleftrightarrow \forall^{\infty} U \in P \exists V \in Q \quad U \subseteq V
$$

When $P \prec^{*} Q$ we let $\Gamma(P, Q)$ be the least n such that every $U \in P$ disjoint from L_{n} is contained in some element of Q.

For a given $P \in \mathbb{P}$, let $s_{P}: Y \rightarrow P$ be the unique function satisfying $x \in s_{P}(x)$ for all $x \in Y$; similarly, when $P, Q \in \mathbb{P}$ and $P \prec Q$ we let $s_{P Q}: P \rightarrow Q$ be the unique function satisfying $U \subseteq s_{P Q}(U)$ for all $U \in P$. These maps induce embeddings $\sigma_{P}: \mathcal{P}(P) /$ fin $\rightarrow \mathcal{C}(Y) / \mathcal{K}(Y)$ and $\sigma_{P Q}: \mathcal{P}(Q) /$ fin $\rightarrow \mathcal{P}(P) /$ fin in the usual way.

Finally, we need to prove a uniqueness result for maps $e: Z \rightarrow \omega$ inducing the same map $\mathcal{P}(\omega) /$ fin $\rightarrow \mathcal{C}(Z) / \mathcal{K}(Z)$.

Lemma 4.3. Suppose $Z \in \mathcal{C}(X)$ and $e, f: Z \rightarrow \omega$ are continuous, compact-to-one maps, such that $e^{-1}(a) \Delta f^{-1}(a)$ is compact for every $a \subseteq \omega$. Then $\{x \in Z \mid e(x) \neq$ $f(x)\}$ is compact.

Proof. Suppose not; then for some infinite set $I \subseteq \omega$ and all $n \in I$, there is a point $x_{n} \in Z \cap X_{n}$ such that $e\left(x_{n}\right) \neq f\left(x_{n}\right)$. Since e and f are compact-to-one, we may assume also that $m \neq n$ implies $e\left(x_{m}\right) \neq e\left(x_{n}\right)$ and $f\left(x_{m}\right) \neq f\left(x_{n}\right)$. Now define a coloring $F:[I]^{2} \rightarrow 3$ by

$$
F(\{m<n\})= \begin{cases}0, & e\left(x_{m}\right) \neq f\left(x_{n}\right) \wedge f\left(x_{m}\right) \neq e\left(x_{n}\right), \\ 1, & e\left(x_{m}\right)=f\left(x_{n}\right) \wedge f\left(x_{m}\right) \neq e\left(x_{n}\right), \\ 2, & e\left(x_{m}\right) \neq f\left(x_{n}\right) \wedge f\left(x_{m}\right)=e\left(x_{n}\right) .\end{cases}
$$

By Ramsey's theorem, there is an infinite set $a \subseteq I$ which is homogeneous for this coloring. Suppose first that a is 1 -homogeneous, and let $m<n<k$ be members of a. Then

$$
e\left(x_{m}\right)=f\left(x_{n}\right) \quad \text { and } \quad e\left(x_{m}\right)=f\left(x_{k}\right) \quad \text { and } \quad e\left(x_{n}\right)=f\left(x_{k}\right)
$$

which implies $e\left(x_{n}\right)=f\left(x_{n}\right)$, a contradiction. Similarly, a cannot be 2 -homogeneous.
Now suppose a is 0 -homogeneous. Let $a=a_{0} \cup a_{1}$ be a partition of a into two infinite sets, and put $W_{i}=\left\{x_{n} \mid n \in a_{i}\right\}$ and $W=\left\{x_{n} \mid n \in a\right\}=W_{0} \cup W_{1}$. From the homogeneity of a, it follows that $e^{\prime \prime} W \cap f^{\prime \prime} W=\emptyset$, and hence (as e and f are injective on W)

$$
W \cap e^{-1}\left(\left(e^{\prime \prime} W_{0}\right) \cup\left(f^{\prime \prime} W_{1}\right)\right)=W_{0} \quad \text { and } \quad W \cap f^{-1}\left(\left(e^{\prime \prime} W_{0}\right) \cup\left(f^{\prime \prime} W_{1}\right)\right)=W_{1} .
$$

So, if $b=e^{\prime \prime} W_{0} \cup f^{\prime \prime} W_{1}$, we have $W \subseteq e^{-1}(b) \Delta f^{-1}(b)$. But W is not compact, so this is a contradiction.

Proof of Theorem 4.1. For each $P \in \mathbb{P}$, let $\varphi_{P}=\varphi \circ \sigma_{P}$. Then φ_{P} is an embedding of $\mathcal{P}(P) /$ fin into $\mathcal{C}(X) / \mathcal{K}(X)$. By Theorem 4.1, there is a continuous map e_{P} : $X \rightarrow P$ such that $a \mapsto e_{P}^{-1}(a)$ lifts φ_{P}. Note that if $P, Q \in \mathbb{P}$ and $P \prec^{*} Q$, then the following diagram commutes:

So by Lemma 4.3, the set $\left\{x \in X \mid s_{P Q}\left(e_{P}(x)\right) \neq e_{Q}(x)\right\}$ is compact. Now let $[\mathbb{P}]^{2}=M_{0} \cup M_{1}$ be the partition defined by

$$
\{P, Q\} \in M_{0} \Longleftrightarrow \exists x \in X \quad s_{P, P \vee Q}\left(e_{P}(x)\right) \neq s_{Q, P \vee Q}\left(e_{Q}(x)\right)
$$

Here $P \vee Q$ is the finest partition coarser than both P and Q. If we define f_{P} : $\mathcal{B} \rightarrow \mathcal{C}(X)$ by

$$
f_{P}(U)=\left\{x \in X \mid e_{P}(x) \subseteq U\right\}
$$

then we have

$$
\{P, Q\} \in M_{0} \Longleftrightarrow \exists U \in \mathcal{B}, \quad f_{P}(U) \neq f_{Q}(U)
$$

and it follows that M_{0} is open in the topology on \mathbb{P} obtained by identifying P with f_{P}.

Claim 4.4. There is no uncountable, M_{0}-homogeneous subset of \mathbb{P}.
Proof. Suppose H is such, and has size \aleph_{1}. Using $M A_{\aleph_{1}}$ with a simple modification of Hechler forcing, we see that there is some $\bar{P} \in \mathbb{P}$ such that $P \succ^{*} \bar{P}$ for all $P \in H$. By thinning out H and refining a finite subset of \bar{P}, we may assume that $P \succ \bar{P}$ for all $P \in H$, and moreover that there is an \bar{n} such that for all $P \in H$,

$$
\left\{x \in X \mid s_{\bar{P}, P}\left(e_{\bar{P}}(x)\right) \neq e_{P}(x)\right\} \subseteq K_{\bar{n}}
$$

Now fix $P, Q \in H$ such that $e_{P} \upharpoonright K_{\bar{n}}=e_{Q} \upharpoonright K_{\bar{n}}$. Then $s_{P, P \vee Q} \circ e_{P}=s_{Q, P \vee Q} \circ e_{Q}$, contradicting the fact that $\{P, Q\} \in M_{0}$.

By OCA, there is a countable cover of \mathbb{P} by M_{1}-homogeneous sets; since \mathbb{P} is countably directed under \succ^{*}, it follows that one of them, say \mathbb{Q}, is cofinal in \mathbb{P}. It follows moreover that for some n, we have

$$
\forall P \in \mathbb{P} \exists Q \in \mathbb{Q} \quad \Gamma(Q, P) \leq n
$$

That is, \mathbb{Q} is cofinal in \mathbb{P} under \succ^{n} defined by

$$
P \prec^{n} Q \Longleftrightarrow \forall U \in P\left(U \cap L_{n}=\emptyset \Longrightarrow \exists V \in Q U \subseteq V\right)
$$

Claim 4.5. There is a compact set $K \subseteq X$ and a unique continuous map $e: X \backslash K \rightarrow$ Y satisfying

$$
\forall x \in X \backslash K \quad e(x) \in \bigcap_{P \in \mathcal{Q}} e_{P}(x)
$$

Proof. Fix $x \in X$. If $P, Q \in \mathbb{Q}$, then by M_{1}-homogeneity of \mathbb{Q} we have

$$
s_{P, P \vee Q}\left(e_{P}(x)\right)=s_{Q, P \vee Q}\left(e_{Q}(x)\right) .
$$

Then, the unique member of $P \vee Q$ containing $e_{P}(x)$ is the same as the unique member of $P \vee Q$ containing $e_{Q}(x)$. It follows that $e_{P}(x) \cap e_{Q}(x) \neq \emptyset$, and so either $e_{P}(x) \subseteq e_{Q}(x)$ or vice versa. Then the collection $\left\{e_{P}(x) \mid P \in \mathbb{Q}\right\}$ is a chain, and hence by compactness has nonempty intersection.

Now let

$$
K=\left\{x \in X \mid \forall P \in \mathbb{Q} e_{P}(x) \subseteq L_{n}\right\} \subseteq \bigcap_{P \in \mathbb{Q}} e_{P}^{-1}\left(P \cap \mathcal{C}\left(L_{n}\right)\right) .
$$

Then K is contained in a compact set. If $x \in X \backslash K$ and $P \in \mathbb{Q}$, then $e_{P}(x)$ is disjoint from L_{n}. Then for any $x \in X \backslash K$ and $\epsilon>0$, there is some $P \in \mathbb{Q}$ such that $e_{P}(x)$ has diameter less than ϵ (since \mathbb{Q} is cofinal in \mathbb{P} under \succ^{n}). Thus e, as defined above, is unique.

To see that e is continuous, note that for any open $U \subseteq X$,

$$
x \in e^{-1}(U) \Longleftrightarrow \exists P \in \mathbb{Q} \quad e_{P}(x) \subseteq U .
$$

Claim 4.6. The map $U \mapsto e^{-1}(U)$ lifts φ.
Proof. Fix $P \in \mathbb{Q}$, and let $U \in P$. Then clearly, for all $x \in X \backslash K, e_{P}(x)=U$ if and only if $e(x) \in U$. Since there are only finitely many $U \in P$ such that one of $e_{P}^{-1}(\{U\})$ or $e^{-1}(U)$ meets K, it follows that

$$
\forall^{\infty} U \in P e_{P}^{-1}(\{U\})=e^{-1}(U)
$$

Then $U \mapsto e^{-1}(U)$ lifts φ_{P}.
Now fix $A \in \mathcal{C}(Y)$. Then there is some $P \in \mathbb{P}$ such that A can be written as a union of a subset of P. Find $Q \in \mathbb{Q}$ with $Q \prec^{*} P$; then, up to a compact set, A can be written as a union of some subset a of Q. Hence,

$$
\varphi[A]=\varphi_{Q}[a]=\left[e^{-1}(A)\right] .
$$

References

[1] Uri Abraham, Matatyahu Rubin, and Saharon Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of \aleph_{1}-dense real order types, Ann. Pure Appl. Logic 29 (1985), no. 2, 123-206, DOI 10.1016/0168-0072(84)90024-1. MR801036
[2] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of C^{*}-algebras and K-homology, Ann. of Math. (2) 105 (1977), no. 2, 265-324, DOI 10.2307/1970999. MR0458196
[3] Samuel Coskey and Ilijas Farah, Automorphisms of corona algebras, and group cohomology, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3611-3630, DOI 10.1090/S0002-9947-2014-061461. MR3192609
[4] Alan Dow, A non-trivial copy of $\beta \mathbb{N} \backslash \mathbb{N}$, Proc. Amer. Math. Soc. 142 (2014), no. 8, 2907-2913, DOI 10.1090/S0002-9939-2014-11985-X. MR3209343
[5] Alan Dow and Klaas Pieter Hart, ω^{*} has (almost) no continuous images, Israel J. Math. 109 (1999), 29-39, DOI 10.1007/BF02775024. MR1679586
[6] Alan Dow and Klaas Pieter Hart, A universal continuum of weight \aleph, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1819-1838, DOI 10.1090/S0002-9947-00-02601-5. MR1707489
[7] Alan Dow and Klaas Pieter Hart, The measure algebra does not always embed, Fund. Math. 163 (2000), no. 2, 163-176. MR 1752102
[8] Christopher J. Eagle and Alessandro Vignati, Saturation and elementary equivalence of C^{*}-algebras, J. Funct. Anal. 269 (2015), no. 8, 2631-2664, DOI 10.1016/j.jfa.2015.04.013. MR3390013
[9] Ilijas Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177, DOI 10.1090/memo/0702. MR 1711328
[10] Ilijas Farah, Rigidity conjectures, Logic Colloquium 2000, Lect. Notes Log., vol. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 252-271. MR2143881
[11] Ilijas Farah, All automorphisms of the Calkin algebra are inner, Ann. of Math. (2) $\mathbf{1 7 3}$ (2011), no. 2, 619-661, DOI 10.4007/annals.2011.173.2.1. MR 2776359
[12] Ilijas Farah and Bradd Hart, Countable saturation of corona algebras (English, with English and French summaries), C. R. Math. Acad. Sci. Soc. R. Can. 35 (2013), no. 2, 35-56. MR3114457
[13] Ilijas Farah and Ilan Hirshberg, The Calkin algebra is not countably homogeneous, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5351-5357, DOI 10.1090/proc/13137. MR3556277
[14] Ilijas Farah and Saharon Shelah, Rigidity of continuous quotients, J. Inst. Math. Jussieu 15 (2016), no. 1, 1-28, DOI 10.1017/S1474748014000218. MR3427592
[15] Saeed Ghasemi, Isomorphisms of quotients of FDD-algebras, Israel J. Math. 209 (2015), no. 2, 825-854, DOI 10.1007/s11856-015-1238-9. MR3430261
[16] Saeed Ghasemi, Reduced products of metric structures: a metric Feferman-Vaught theorem, J. Symb. Log. 81 (2016), no. 3, 856-875, DOI 10.1017/jsl.2016.20. MR3569108
[17] Klaas Pieter Hart, The Čech-Stone compactification of the real line, Recent progress in general topology (Prague, 1991), North-Holland, Amsterdam, 1992, pp. 317-352, DOI 10.1016/0887-2333(92)90021-I. MR 1229130
[18] Kenneth Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications, London, 2011. MR2905394
[19] P. McKenney. Reduced products of UHF algebras under forcing axioms. arXiv preprint arXiv:1303.5037, 2013.
[20] P. McKenney and A. Vignati. Forcing axioms and coronas of nuclear C*-algebras.
[21] N. Christopher Phillips and Nik Weaver, The Calkin algebra has outer automorphisms, Duke Math. J. 139 (2007), no. 1, 185-202, DOI 10.1215/S0012-7094-07-13915-2. MR2322680
[22] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
[23] Saharon Shelah and Juris Steprāns, PFA implies all automorphisms are trivial, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1220-1225, DOI 10.2307/2047617. MR935111
[24] Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR980949
[25] Jan van Mill, An introduction to $\beta \omega$, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503-567. MR 776630
[26] Boban Veličković, Definable automorphisms of $\mathcal{P}(\omega) /$ fin, Proc. Amer. Math. Soc. 96 (1986), no. 1, 130-135, DOI 10.2307/2045667. MR813825
[27] Boban Veličković, OCA and automorphisms of $\mathcal{P}(\omega) /$ fin, Topology Appl. 49 (1993), no. 1, 1-13, DOI 10.1016/0166-8641(93)90127-Y. MR 1202874
[28] A. Vignati. Logic and C^{*}-algebras: Set theoretical dichotomies in the theory of continuous quotients. PhD thesis, York University, 2017.
[29] Alessandro Vignati, Nontrivial homeomorphisms of Čech-Stone remainders, Münster J. Math. 10 (2017), no. 1, 189-200. MR3624107
[30] Dan-Virgil Voiculescu, Countable degree-1 saturation of certain C^{*}-algebras which are coronas of Banach algebras, Groups Geom. Dyn. 8 (2014), no. 3, 985-1006, DOI 10.4171/GGD/254. MR 3267530
[31] W. Hugh Woodin, Beyond Σ_{1}^{2} absoluteness, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 515-524. MR1989202

Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario M3J 1P3, Canada

Email address: ifarah@mathstat.yorku.ca
URL: http://www.math.yorku.ca/~ifarah
Department of Mathematics, Miami University, 501 E. High St., Oxford, Ohio 45056
Email address: mckennp2@miamioh.edu
URL: http://users.miamioh.edu/mckennp2

[^0]: Received by the editors November 15, 2012, and, in revised form, August 5, 2017.
 2010 Mathematics Subject Classification. Primary 03E35, 54A35.
 The first author was partially supported by NSERC.
 ${ }^{1}$ There is a deeper metamathematical explanation of the effect of CH ; see 31.

[^1]: ${ }^{2}$ The only previously known case was $X=\mathbb{R}$; see 17] and 14.

