## Homeomorphisms of Čech–Stone remainders: the zero-dimensional case

HTML articles powered by AMS MathViewer

- by Ilijas Farah and Paul McKenney PDF
- Proc. Amer. Math. Soc.
**146**(2018), 2253-2262 Request permission

## Abstract:

We prove, using a weakening of the Proper Forcing Axiom, that any homemomorphism between Čech–Stone remainders of any two locally compact, zero-dimensional Polish spaces is induced by a homeomorphism between their cocompact subspaces.## References

- Uri Abraham, Matatyahu Rubin, and Saharon Shelah,
*On the consistency of some partition theorems for continuous colorings, and the structure of $\aleph _1$-dense real order types*, Ann. Pure Appl. Logic**29**(1985), no. 2, 123–206. MR**801036**, DOI 10.1016/0168-0072(84)90024-1 - L. G. Brown, R. G. Douglas, and P. A. Fillmore,
*Extensions of $C^*$-algebras and $K$-homology*, Ann. of Math. (2)**105**(1977), no. 2, 265–324. MR**458196**, DOI 10.2307/1970999 - Samuel Coskey and Ilijas Farah,
*Automorphisms of corona algebras, and group cohomology*, Trans. Amer. Math. Soc.**366**(2014), no. 7, 3611–3630. MR**3192609**, DOI 10.1090/S0002-9947-2014-06146-1 - Alan Dow,
*A non-trivial copy of $\beta \Bbb {N}\sbs \Bbb {N}$*, Proc. Amer. Math. Soc.**142**(2014), no. 8, 2907–2913. MR**3209343**, DOI 10.1090/S0002-9939-2014-11985-X - Alan Dow and Klaas Pieter Hart,
*$\omega ^*$ has (almost) no continuous images*, Israel J. Math.**109**(1999), 29–39. MR**1679586**, DOI 10.1007/BF02775024 - Alan Dow and Klaas Pieter Hart,
*A universal continuum of weight $\aleph$*, Trans. Amer. Math. Soc.**353**(2001), no. 5, 1819–1838. MR**1707489**, DOI 10.1090/S0002-9947-00-02601-5 - Alan Dow and Klaas Pieter Hart,
*The measure algebra does not always embed*, Fund. Math.**163**(2000), no. 2, 163–176. MR**1752102**, DOI 10.4064/fm-163-2-163-176 - Christopher J. Eagle and Alessandro Vignati,
*Saturation and elementary equivalence of $C^*$-algebras*, J. Funct. Anal.**269**(2015), no. 8, 2631–2664. MR**3390013**, DOI 10.1016/j.jfa.2015.04.013 - Ilijas Farah,
*Analytic quotients: theory of liftings for quotients over analytic ideals on the integers*, Mem. Amer. Math. Soc.**148**(2000), no. 702, xvi+177. MR**1711328**, DOI 10.1090/memo/0702 - Ilijas Farah,
*Rigidity conjectures*, Logic Colloquium 2000, Lect. Notes Log., vol. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 252–271. MR**2143881** - Ilijas Farah,
*All automorphisms of the Calkin algebra are inner*, Ann. of Math. (2)**173**(2011), no. 2, 619–661. MR**2776359**, DOI 10.4007/annals.2011.173.2.1 - Ilijas Farah and Bradd Hart,
*Countable saturation of corona algebras*, C. R. Math. Acad. Sci. Soc. R. Can.**35**(2013), no. 2, 35–56 (English, with English and French summaries). MR**3114457** - Ilijas Farah and Ilan Hirshberg,
*The Calkin algebra is not countably homogeneous*, Proc. Amer. Math. Soc.**144**(2016), no. 12, 5351–5357. MR**3556277**, DOI 10.1090/proc/13137 - Ilijas Farah and Saharon Shelah,
*Rigidity of continuous quotients*, J. Inst. Math. Jussieu**15**(2016), no. 1, 1–28. MR**3427592**, DOI 10.1017/S1474748014000218 - Saeed Ghasemi,
*Isomorphisms of quotients of FDD-algebras*, Israel J. Math.**209**(2015), no. 2, 825–854. MR**3430261**, DOI 10.1007/s11856-015-1238-9 - Saeed Ghasemi,
*Reduced products of metric structures: a metric Feferman-Vaught theorem*, J. Symb. Log.**81**(2016), no. 3, 856–875. MR**3569108**, DOI 10.1017/jsl.2016.20 - Klaas Pieter Hart,
*The Čech-Stone compactification of the real line*, Recent progress in general topology (Prague, 1991) North-Holland, Amsterdam, 1992, pp. 317–352. MR**1229130**, DOI 10.1016/0887-2333(92)90021-I - Kenneth Kunen,
*Set theory*, Studies in Logic (London), vol. 34, College Publications, London, 2011. MR**2905394** - P. McKenney. Reduced products of UHF algebras under forcing axioms.
*arXiv preprint arXiv:1303.5037*, 2013. - P. McKenney and A. Vignati. Forcing axioms and coronas of nuclear $\textrm {C}^*$-algebras.
- N. Christopher Phillips and Nik Weaver,
*The Calkin algebra has outer automorphisms*, Duke Math. J.**139**(2007), no. 1, 185–202. MR**2322680**, DOI 10.1215/S0012-7094-07-13915-2 - Saharon Shelah,
*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955**, DOI 10.1007/978-3-662-21543-2 - Saharon Shelah and Juris Steprāns,
*PFA implies all automorphisms are trivial*, Proc. Amer. Math. Soc.**104**(1988), no. 4, 1220–1225. MR**935111**, DOI 10.1090/S0002-9939-1988-0935111-X - Stevo Todorčević,
*Partition problems in topology*, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR**980949**, DOI 10.1090/conm/084 - Jan van Mill,
*An introduction to $\beta \omega$*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR**776630** - Boban Veli ković,
*Definable automorphisms of ${\scr P}(\omega )/\textrm {fin}$*, Proc. Amer. Math. Soc.**96**(1986), no. 1, 130–135. MR**813825**, DOI 10.1090/S0002-9939-1986-0813825-8 - Boban Veli ković,
*$\textrm {OCA}$ and automorphisms of ${\scr P}(\omega )/\textrm {fin}$*, Topology Appl.**49**(1993), no. 1, 1–13. MR**1202874**, DOI 10.1016/0166-8641(93)90127-Y - A. Vignati.
*Logic and $\textrm {C}^*$-algebras: Set theoretical dichotomies in the theory of continuous quotients*. PhD thesis, York University, 2017. - Alessandro Vignati,
*Nontrivial homeomorphisms of Čech-Stone remainders*, Münster J. Math.**10**(2017), no. 1, 189–200. MR**3624107**, DOI 10.17879/33249446858 - Dan-Virgil Voiculescu,
*Countable degree-1 saturation of certain $C^*$-algebras which are coronas of Banach algebras*, Groups Geom. Dyn.**8**(2014), no. 3, 985–1006. MR**3267530**, DOI 10.4171/GGD/254 - W. Hugh Woodin,
*Beyond $\utilde \Sigma ^2_1$ absoluteness*, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 515–524. MR**1989202**

## Additional Information

**Ilijas Farah**- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario M3J 1P3, Canada
- MR Author ID: 350129
- Email: ifarah@mathstat.yorku.ca
**Paul McKenney**- Affiliation: Department of Mathematics, Miami University, 501 E. High St., Oxford, Ohio 45056
- MR Author ID: 1024792
- Email: mckennp2@miamioh.edu
- Received by editor(s): November 15, 2012
- Received by editor(s) in revised form: August 5, 2017
- Published electronically: January 26, 2018
- Additional Notes: The first author was partially supported by NSERC
- Communicated by: Mirna Džamonja
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 2253-2262 - MSC (2010): Primary 03E35, 54A35
- DOI: https://doi.org/10.1090/proc/13736
- MathSciNet review: 3767375