Let k be an algebraically closed field, and Q a finite acyclic quiver. The modules which we consider are the (finite-dimensional) kQ-modules, where kQ is the path algebra of Q, thus the (finite-dimensional) representations of Q (with coefficients in k). We denote by $\text{mod}kQ$ the corresponding module category.

Let M be a representation of Q and let d be a dimension vector for Q. The quiver Grassmannian $G_d(M)$ is the set of submodules of M with dimension vector $\text{dim} M = d$; this is a projective variety. A famous result of Zimmermann-Huisgen, Hille and Reineke asserts that any projective variety occurs as the quiver Grassmannian for some wild acyclic quiver Q; see for example [3]. We are going to show:

Theorem. Let Q be any wild acyclic quiver. Any projective variety occurs as a quiver Grassmannian $G_d(M)$ for some representation M of Q and some dimension vector d.

Typical wild acyclic quivers are the Kronecker quivers $Q = K(n)$ with $n \geq 3$ (the Kronecker quiver $K(n)$ has two vertices 1 and 2 and n arrows pointing from 2 to 1). A representation of $K(n)$ will be said to be reduced provided N has no simple injective direct summand. In [3] we have shown that for any projective variety V there is a natural number n (depending on V) such that V can be realized as the quiver Grassmannian $G_{(1,1)}(N)$ of a reduced representation N of $K(n)$ (see also [1]). Our present investigation relies on this special case.

Note that the elements of $G_{(1,1)}(N)$ are certain submodules of N of length 2, and all the indecomposable submodules of length 2 belong to $G_{(1,1)}(N)$. We call indecomposable modules of length 2 bristles. For any representation N of $K(n)$, the set $\beta(N)$ of bristle submodules of N is an open subset of $G_{(1,1)}(N)$ which we call the bristle variety of N. In general, $\beta(N)$ is a proper subset of $G_{(1,1)}(N)$, but for a reduced representation N, we have $\beta(N) = G_{(1,1)}(N)$.

The procedure of the present paper is as follows: Given any wild acyclic quiver Q, and a natural number m, we will construct for some $n \geq m$ an orthogonal pair X, Y of bricks with $\text{dim Ext}^1(Y, X) = n$ (a brick is a module with endomorphism ring k and X, Y are said to be orthogonal provided $\text{Hom}(X, Y) = 0 = \text{Hom}(Y, X)$).
Always, \(x \) and \(y \) will denote the dimension vectors of \(X \) and \(Y \), respectively. Let \(\mathcal{E} = \mathcal{E}(Y, X) \) be the full subcategory of all \(kQ \)-modules \(M \) with an exact sequence of the form

\[
0 \rightarrow X^a \rightarrow M \rightarrow Y^b \rightarrow 0,
\]

where \(a, b \) are natural numbers. Note that \(\mathcal{E} \) is equivalent to \(\text{mod} \, kK(n) \) with an equivalence being given by an exact fully faithful functor

\[
\eta: \text{mod} \, kK(n) \rightarrow \text{mod} \, kQ
\]

with image \(\mathcal{E} \). We say that a module \(M \) in \(\mathcal{E} \) is \(\mathcal{E} \)-reduced provided it has no direct summand isomorphic to \(Y \), thus provided it is the image of a reduced \(kK(n) \)-module under \(\eta \).

An indecomposable \(kQ \)-module \(U \) will be called an \(\mathcal{E} \)-bristle provided there is an exact sequence of the form \(0 \rightarrow X \rightarrow U \rightarrow Y \rightarrow 0 \), thus provided \(U \) is the image of a bristle in \(\text{mod} \, kK(n) \) under \(\eta \). For any \(kK(n) \)-module \(N \) with \(M = \eta N \), the functor \(\eta \) identifies the bristle variety \(\beta(N) \) of \(N \) with the set \(\beta_\mathcal{E}(M) \) of submodules of \(M \) which are \(\mathcal{E} \)-bristles. Since \(\mathcal{E} \)-bristles have dimension vector \(x + y \), we have \(\beta_\mathcal{E}(M) \subseteq \mathbb{G}_{x+y}(M) \). It remains to find conditions such that any submodule \(U \) of \(M \) with dimension vector \(x + y \) is indeed an \(\mathcal{E} \)-bristle.

To be precise, we are looking for \(kQ \)-modules \(X, Y \) so that the following closure condition \((C)\) is satisfied:

\((C)\) If \(M \) is an \(\mathcal{E} \)-reduced module in \(\mathcal{E}(Y, X) \) and \(U \) is a submodule of \(M \) with \(\dim U = x + y \), then \(U \) is an \(\mathcal{E} \)-bristle.

If the condition \((C)\) is satisfied, then for any reduced representation \(N \) of \(K(n) \), there is a canonical bijection between \(\mathbb{G}_{(1,1)}(N) \) and \(\mathbb{G}_{x+y}(M) \), where \(M = \eta N \). Namely, if \(B \) is a submodule of the \(kK(n) \)-module \(N \) with \(\dim B = (1, 1) \), then \(\eta B \) is a submodule of \(M \) with dimension vector \(x + y \). Conversely, if \(U \) is a submodule of \(M \) with \(\dim U = x + y \), then, by condition \((C)\), \(U \) belongs to \(\mathcal{E}(Y, X) \), say \(U = \eta B \) for some \(k(n) \)-submodule \(B \) and the dimension vector of \(B \) is \((1, 1) \).

The minimal wild acyclic quivers. As we have mentioned, our aim is to exhibit for any wild acyclic quiver \(Q \) and any natural number \(m \) an orthogonal pair \(X, Y \) of \(kQ \)-modules which are bricks such that \(\dim_k \text{Ext}^1(Y, X) = n \geq m \) and such that the condition \((C)\) is satisfied. Of course, it is sufficient to deal with minimal wild acyclic quivers. (We recall that a quiver \(Q \) is wild provided it is not the disjoint union of Dynkin and Euclidean quivers, and \(Q \) is said to be minimal wild provided it is wild, and no quiver obtained from \(Q \) by deleting a vertex or an arrow is wild.)

The following well-known proposition suggests to deal with two different cases.

Proposition. A minimal wild acyclic quiver \(Q \) different from \(K(3) \) is obtained from a Euclidean quiver \(Q' \) by adding a vertex \(\omega \) and a single arrow which connects \(\omega \) with some vertex of \(Q' \) (in particular, \(\omega \) is a sink or a source).

Sketch of proof. If \(Q \) has cycles, then there is a subquiver \(Q' \) of type \(\widetilde{A}_n \) for some \(n \) such that \(Q' \) is obtained from \(Q \) by deleting one vertex and one arrow.

Now assume that \(Q \) is a tree. If there is a vertex with at least four neighbors, then \(Q' \) is obtained from a quiver of type \(\widetilde{D}_4 \) by deleting one vertex and one arrow. If \(Q \) has two vertices which have three neighbors each, then \(Q' \) is obtained from a quiver of type \(\widetilde{D}_n \) with \(n \geq 5 \) by deleting one vertex and one arrow. If \(Q \) has a star
with three arms, then Q' is obtained from a quiver of type \widetilde{E}_m with $m = 6, 7, 8$ by deleting one vertex and one arrow.

Case 1 (One-point extensions of representation-infinite quivers). We assume now that Q is a connected quiver with a vertex ω which is a sink or a source such that the quiver Q' obtained from Q by deleting ω and the arrows which start or end in ω is connected and representation-infinite. Up to duality, we can assume that ω is a source, thus there is an arrow $\omega \to p$ with $p \in Q'_0$.

Let $Y = S(\omega)$, the simple kQ'-module corresponding to the vertex ω. Since Q' is connected and representation-infinite, there is an exceptional kQ'-module X with $\dim_k X_p = m$. The arrow $\omega \to p$ shows that $\dim_k \operatorname{Ext}^1(Y, X) \geq \dim_k X_p$. This pair X,Y is the orthogonal pair of bricks which we use in order to look at $\mathcal{E}(Y, X)$.

Lemma 1. Let a be a natural number. Any submodule W of X^a with $\dim W = x$ is isomorphic to X.

Proof. We denote by $\langle - , - \rangle$ the bilinear form on the Grothendieck group $K_0(kQ)$ with $\langle \dim M, \dim M' \rangle = \dim_k \operatorname{Hom}(M, M') - \dim_k \operatorname{Ext}^1(M, M')$. Since X is exceptional, we have $\langle X, W \rangle = \langle X, X \rangle > 0$. Therefore, there is a non-zero homomorphism $f : X \to W$. Let $\iota : W \to X^a$ be the inclusion map. The composition $\iota f : X \to X^a$ is non-zero. Since X is a brick, we see that $f : X \to W$ is a split monomorphism, in particular injective. Now $\dim X = \dim W$ implies that f is an isomorphism. □

Proof of condition (C). Let M be an \mathcal{E}-reduced kQ-module in $\mathcal{E}(Y, X)$, say with an exact sequence

$$
0 \longrightarrow X^a \xrightarrow{\mu} M \xrightarrow{\pi} Y^b \longrightarrow 0.
$$

Let U be a submodule of M with dimension vector $x + y$ and inclusion map $\iota : U \to M$. The composition $\pi \iota$ is non-zero, since otherwise U would be a submodule of X^a, but $\dim_k U_\omega = 1$ whereas $X_\omega = 0$. If follows that the image of $\pi \iota$ is isomorphic to Y. If we denote the kernel of $\pi \iota$ by W, we obtain the following commutative diagram with exact rows and vertical monomorphisms:

$$
\begin{array}{ccc}
0 & \longrightarrow & W \\
\text{ } & \downarrow & \text{ } \\
0 & \longrightarrow & X^a \\
\end{array}
\quad \begin{array}{ccc}
M & \xrightarrow{\pi} & Y^b \\
\mu & \text{ } & \text{ } \\
\iota & \text{ } & \text{ } \\
0 & \longrightarrow & 0
\end{array}
$$

Of course, $\dim W = x$, thus Lemma □ shows that W is isomorphic to X. In particular, U belongs to \mathcal{E}.

It remains to show that U is indecomposable. Otherwise, U would be isomorphic to $W \oplus Y$. Thus M would have a submodule isomorphic to Y. But Y is relative injective inside \mathcal{E}, thus M would have a direct summand isomorphic to Y, in contrast to our assumption that M is \mathcal{E}-reduced. This shows that U is indecomposable, thus an \mathcal{E}-bristle. □

Case 2 (The Kronecker quiver $K(3)$). Here we consider the Kronecker quiver $Q = K(3)$, with the three arrows $\alpha, \beta, \gamma : 2 \to 1$. Let $\lambda_1, \ldots, \lambda_n$ be pairwise different non-zero elements of k with $n \geq 2$. Let $X = X(\lambda_1, \ldots, \lambda_n) = (k^n, k^n; \alpha, \beta, \gamma)$ be defined by

$$
\alpha(e(i)) = e(i), \quad \beta(e(i)) = \lambda_i e(i), \quad \gamma(e(i)) = e(i+1),
$$

It remains to show that X is injective. Otherwise, X would be isomorphic to $k^n \oplus X$ and X would have a submodule isomorphic to k^n. But k^n is relative injective in \mathcal{E}, thus X would have a direct summand isomorphic to k^n, in contrast to our assumption that X is indecomposable. This shows that X is injective. □
for $1 \leq i \leq n$, where $e(1), \ldots, e(n)$ is the canonical basis of k^n and $e(n + 1) = e(1)$.

Let $Y = (k, k; 1, 0, 0)$. We denote by Q' the subquiver of Q with arrows α, β, this is the 2-Kronecker quiver $K(2)$. For the structure of the category mod $K(2)$, see for example [2]. The restriction of X, Y to Q' shows that $\text{Hom}(X, Y) = \text{Hom}(Y, X) = 0$. The endomorphism ring of $X_{|Q'}$ is $k \times \cdots \times k$; and the only endomorphisms of $X_{|Q'}$ which commute with γ are the scalar multiplications. This shows that X is a brick. Also, it is easy to see that $\dim_k \text{Ext}^1(Y, X) = n$.

Lemma 2. Let a be a natural number. Any submodule W of X^n with $\dim W$ of the form (w, w) is isomorphic to X^s for some s.

Proof. Let $M = X^n$ and decompose $M_{|Q'} = \bigoplus_{i=1}^n M(i)$, where $\beta(x) = \lambda_ix$ for $x \in M(i)_1$. Here, we use α in order to identify M_1 and M_2. Now we consider the submodule W of M. Note that $W_{|Q'}$ has to be regular, since it cannot have any non-zero preinjective direct summand. As a regular submodule of a semisimple regular Kronecker module it has to be a direct summand of $M_{|Q'}$, thus we have a similar direct decomposition $W = \bigoplus W(i)$, where $W(i) = W \cap M(i)$.

The linear map γ restricted to $W(i)_1$ is a monomorphism $W(i)_1 \rightarrow W(i_1+1)$ for $1 \leq i \leq n$; we obtain in this way a monomorphism $W(1)_1 \rightarrow W(1)$, which shows that all the monomorphisms $W(i)_1 \rightarrow W(i_1+1)$ are actually bijections. Let $\dim_k W(1)_1 = s$. It follows that W is isomorphic to X^s. □

Proof of condition (C). Let M be an E-reduced kQ-module in E and let U be a submodule of M with dimension vector $x + y = (n + 1, n + 1)$ and with inclusion map $\iota : U \rightarrow M$.

Starting with the exact sequence $0 \rightarrow X^n \xrightarrow{\mu} M \xrightarrow{\pi} Y^b \rightarrow 0$ and the inclusion map $\iota : U \rightarrow M$, let W be the kernel and let \overline{U} be the image of $\pi \iota : U \rightarrow Y^b$. We obtain the following commutative diagram with exact rows and injective vertical maps:

$$
\begin{array}{cccccc}
0 & \rightarrow & W & \rightarrow & U & \rightarrow & \overline{U} & \rightarrow & 0 \\
0 & \rightarrow & X^n & \xrightarrow{\mu} & M & \xrightarrow{\pi} & Y^b & \rightarrow & 0.
\end{array}
$$

Let us consider the restriction of these modules to Q'. Since $M_{|Q'}$ is regular, it has no non-zero preinjective direct summand. Thus any submodule of $M_{|Q'}$ with dimension vector $(n + 1, n + 1)$ has to be regular. This shows that $U_{|Q'}$ is regular. Actually, $M_{|Q'}$ is semisimple regular, thus also its regular submodule $U_{|Q'}$ is semisimple regular (and a direct summand of $M_{|Q'}$). Next, $\pi \iota$ is a map between regular kQ'-modules. It follows that the kernel $W_{|Q'}$ and the image $\overline{U}_{|Q'}$ are regular kQ'-modules. In particular, the dimension vector of W is of the form $\dim W = (w, w)$ for some $0 \leq w \leq n + 1$.

Now $\overline{U}_{|Q'}$ is a regular submodule of the semisimple regular kQ'-module $Y^b_{|Q'}$, thus $\overline{U}_{|Q'}$ is a direct sum of copies of $Y_{|Q'}$. By construction, Y is annihilated by γ. Since \overline{U} is a submodule of Y^b, it follows that \overline{U} is annihilated by γ. Altogether, we see that \overline{U} is the direct sum of copies of Y.

We claim that $W \neq 0$. Otherwise $U = \overline{U} = Y^{n+1}$, thus Y is a direct summand of M. However, by assumption, M is E-reduced. This contradiction shows that $W \neq 0$.

Now W is a submodule of X^a with dimension vector (w, w), thus, according to Lemma 2, W is a direct summand of say s copies of X and $s \geq 1$. The equality $(w, w) = (sn, sn)$ implies that $s = 1$, since $w \leq n + 1$ and $n \geq 2$. In this way, we see that W is isomorphic to X. It follows that $\dim \underline{U} = (1, 1)$ and therefore $\underline{U} = Y$.

Finally, as in Case 1, we see that U is indecomposable, using again the assumption that M is E-reduced. This shows that U is an E-bristle. □

Remark. We should stress that given orthogonal bricks X, Y in mod kQ, the condition (C) is usually not satisfied. Here is a typical example for $Q = K(3)$. As above, let $Y = (k, k; 1, 0, 0)$, but for X we now take $X = X'(\lambda_1, \lambda_2) = (k^2, k^2; \alpha, \beta, \gamma)$, defined by

\[
\alpha(e(i)) = e(i), \quad \beta(e(i)) = \lambda_i e(i), \quad \gamma(e(1)) = e(2), \quad \gamma(e(2)) = 0
\]

for $1 \leq i \leq 2$. Again, $e(1), e(2)$ is the canonical basis of k^2 and $\lambda_1 \neq \lambda_2$ are assumed to be non-zero elements of k. Since $\dim_k \text{Ext}^1(Y, X) = 2$, there is an equivalence $\eta : \text{mod } kK(2) \to \mathcal{E}(Y, X)$. Let N be an indecomposable $kK(2)$-module with dimension vector $(2, b)$ (note that b has to be equal to 1, 2 or 3) and $M = \eta N$. Thus there is an exact sequence

\[
0 \longrightarrow X^2 \longrightarrow M \longrightarrow Y^b \longrightarrow 0.
\]

Since we assume that N is indecomposable, it is reduced, thus M is E-reduced. Note that X has a (unique) kQ-submodule V with dimension vector $(1, 1)$: the vector spaces V_1 and V_2 both are generated by $e(2)$. The submodule $U = X \oplus V$ of X^2 is a submodule of M with dimension vector $(3, 3) = x + y$, and it is not an E-bristle. Thus, condition (C) is not satisfied. Here, η defines a proper embedding of $\beta(N) = \mathbb{G}_{(1, 1)}(N)$ into $\mathbb{G}_{x+y}(M)$.

References

Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany
Email address: ringel@math.uni-bielefeld.de