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ON EMBEDDINGS OF FINITE SUBSETS OF �p

JAMES KILBANE

(Communicated by Thomas Schlumprecht)

Abstract. We study finite subsets of �p and show that, up to a nowhere dense
and Haar null complement, all of them embed isometrically into any Banach
space that uniformly contains �np .

1. Introduction

One of the basic directions of research in Banach space theory is to find some
structure in every infinite dimensional Banach space or in an infinite-dimensional
Banach space belonging to some class. One of the most important results of this
type is the following.

Theorem 1.1 (Dvoretzky’s theorem [6]). For each infinite-dimensional Banach
space X, each n ∈ N, and each ε > 0, there is an n-dimensional subspace Xn ⊂ X
and an isomorphism Tn : Xn → �n2 such that ‖T‖‖T−1‖ ≤ 1 + ε.

This theorem was conjectured by Grothendieck in [7].
It is easy to see that we cannot replace (1+ε) by 1 in this theorem. This follows,

for example, from the fact that the unit ball of any finite-dimensional subspace of
c0 is a polytope. The fact that �p does not contain �n2 isometrically, unless p is an
even integer, was proven in [5].

Another result we would like to mention here is an analogue of Dvoretzky’s
theorem in the case of �p. For this, we restrict ourselves to the class of Banach
spaces that are isomorphic to �p and note the following result.

Theorem 1.2 (Krivine’s theorem [9]). For each infinite-dimensional Banach space
X isomorphic to �p, each n ∈ N, and each ε > 0, there is an n-dimensional subspace
Xn ⊂ X and an isomorphism Tn : Xn → �np such that ‖T‖‖T−1‖ ≤ 1 + ε.

One of the important directions of current research is the study of embeddability
of finite metric spaces into Banach spaces; see Chapter 15 in [10].

Recently Ostrovskii [11, 12] suggested the possibility of proving finite isometric
versions of the Dvoretzky and Krivine theorems, respectively. Note that the above
mentioned counterexamples to the ”Dvoretzky theorem with ε = 0” do not work
for finite sets. For c0 this follows from the well-known observation of Fréchet that
each n-element metric space admits an isometric embedding into �n∞, and for �p
(1 ≤ p < ∞) this follows from results of Ball [2], which we shall discuss later.

This paper is devoted to the following question.
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Question 1. Suppose 1 < p < ∞, and that X is a Banach space that contains an
isomorphic copy of �p. Then does any finite subset of �p embed isometrically into
X?

The following partial result for Question 1 in the case p = 2 was proved by
Shkarin in [13].

Theorem 1.3 (Lemma 3 of [13]). Suppose X is any infinite-dimensional Banach
space and that Z is any affinely independent subset of �2. Then Z embeds isomet-
rically into X.

This result was a strengthening of results obtained in [4]. A different proof was
given in [8], and the methods of both [8] and [13] inspired the proofs in this article.
We note that in the case p = 2, Theorem 1.3 provides a partial positive answer to
the following variant of Question 1.

Question 2. Suppose that 1 < p < ∞ and thatX is a Banach space uniformly con-
taining the spaces �np , n ∈ N. Then does any finite subset of �p embed isometrically
into X?

As before, the weaker conclusion that finite subsets of �p embed almost isomet-
rically into such a space X follows from a finite quantitative version of Krivine’s
theorem (see Theorem 2.1 below).

There are natural analogues of Questions 2 and 1 for p = ∞. Since any n-point
metric space embeds isometrically into �n∞, the conclusion in any such analogue is
that X contains isometrically all finite metric spaces. The assumption on X is one
of the following (in decreasing order of strength): X contains an isomorphic copy
of �∞; X contains an isomorphic copy of c0; X contains the spaces �n∞, n ∈ N,
uniformly. The answer for each of these questions is, however, negative. Indeed, let
X be a strictly convex renorming of �∞. Then subsets of X have the unique metric
midpoint property, i.e., there is no collection of 4 distinct points x, y, z, w ∈ X such
that d(x, z) = d(z, y) = d(x,w) = d(w, y) = 1

2d(x, y). However, there are finite
metric spaces with this property, and thus such a metric space does not embed
isometrically into X. In [8] we showed a positive result similar to Theorem 1.3.
Let us call a metric space concave if it contains no three distinct points x, y, z such
that d(x, z) = d(x, y) + d(y, z). Then we have the following.

Theorem 1.4 (Theorem 4.3 of [8]). Suppose that X is some infinite-dimensional
Banach space such that the spaces �n∞, n ∈ N, uniformly embed into X. Then if Z
is any finite concave metric space, Z embeds isometrically into X.

In this paper we obtain a partial positive answer to Question 2 similar to Theo-
rems 1.3 and 1.4. As in the case of p = 2 there remains a class of subsets of �p that
our proof does not handle. This collection is certainly small in a strong sense. Our
main theorem is as follows.

Theorem 1.5. Suppose 1 < p < ∞ and that Z is a Banach space that uniformly
contains the spaces �np , n ∈ N. Then, for each n ∈ N, the set of n-point subsets
of �p that do not embed isometrically into Z is nowhere dense and Haar null as a
subset of �p × · · · × �p endowed with one of its standard norms.

We now describe how our paper is organized. We shall also explain why the case
of p ∈ (1,∞) is more difficult than the special cases of p = 2 and p = ∞ and how
we handle the additional difficulty.
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In Section 2 we recall various definitions and results that will be used throughout
the paper (and have already been used in this introduction). The proof of Theorem
1.5 begins in Section 3. Here we prove a result (see Theorem 3.1) that may be
of independent interest: almost all n-point subsets of �np have the property that
small perturbations of that subset remain subsets of �np . In Section 4 we introduce
Property K of finite subsets of �p. Our aim will be to show that every finite subset
of �p with Property K embeds isometrically into a Banach space X that satisfies
the assumption of Theorem 1.5.

For general p ∈ (1,∞), Property K plays the rôle of affine independence in the
case p = 2 or concavity in the case p = ∞. For p = 2, any n-point subset of
�2 embeds isometrically into �n2 via an orthogonal transformation which preserves
affine independence. For p = ∞, any n-point metric space embeds into �n∞ via
an isometry, which preserves concavity. For general p ∈ (1,∞) it is not even
clear if a finite subset of �p embeds isometrically into �Np for any N . In fact, this
is true: the result of Ball mentioned earlier states that any n-point subset of �p
embeds isometrically into �Np with N =

(
n
2

)
. The difficulty is that Ball’s proof is

not constructive, and Property K is somewhat technical. In Section 4 we prove
a version of Ball’s result (Lemma 4.1) which is much weaker, in the sense that N
will depend on the subset. However, Lemma 4.1 will show that our embedding will
preserve Property K.

Remark 1.6. In this article, we do not pay much attention to the case p = 1. Indeed,
as stated, Question 1 is false. As for �∞, there is a strictly convex renorming X
of �1, and no finite subset of �1 that fails the unique metric midpoint property
embeds isometrically into such an X. However, one might expect a result similar
to Theorem 1.4 to hold when there’s a restriction on the type of subset we consider.
The methods of this paper rely heavily on the differentiability of the norm of �p
for 1 < p < ∞ which fails for p = 1. Thus our techniques only produce weak
conclusions in the case p = 1.

2. Classical results and notation

2.1. Banach space definitions and classical results. Throughout this paper,
for simplicity, we will only be interested in real Banach spaces.

Suppose that X and Y are Banach spaces. The Banach–Mazur distance between
X and Y is defined by d(X,Y ) = inf{‖T‖‖T−1‖ : T is an isomorphism from X
to Y }. We say that a Banach space X is C-isomorphic to a Banach space Y if
there is a linear isomorphism T : X → Y such that ‖T‖‖T−1‖ ≤ C. We say that a
Banach space X almost isometrically contains a Banach space Y , or that Y almost
isometrically embeds into X, if for each ε > 0 there is a subspace Z of X such that
Z is (1 + ε)−isomorphic to Y . We say that a Banach space X uniformly contains
spaces Xn, n ∈ N, if there exist a constant C and subspaces Yn of X such that Yn

is C-isomorphic to Xn for all n.
We will need the following quantitative version of Krivine’s theorem:

Theorem 2.1. Let 1 ≤ p ≤ ∞, let C ≥ 1, let ε > 0 and let k ∈ N. Then there is
some n (dependent on p, C, k, and ε) such that if a Banach space X is C-isomorphic
to �np , then there is a subspace of X that is (1 + ε)-isomorphic to �kp.

For a proof of this theorem, including estimates of the constants involved, we
refer the reader to [1].
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We introduce the notion of a null set in infinite-dimensional Banach spaces.
A well-known fact is that if X is infinite dimensional and separable, and μ is a
translation-invariant Borel measure on X, then μ either assigns 0 or ∞ to every
open subset of X. However, there are several useful notions of a null set in Banach
spaces under which the null sets form a translation-invariant σ-ideal. One such
notion that we shall use is that of a Haar null set. A Borel set A ⊂ X is called
Haar null if there is a Borel probability measure μ on X such that μ(x + A) = 0
for every x ∈ X. It is easy to see that if for some n ∈ N there is an n-dimensional
subspace Y of X such that the measure λn(Y ∩ (A+ x)) = 0 for all x ∈ X, where
λn is n-dimensional Lebesgue measure, then A is Haar null. More on sets of this
type, and on other notions of nullity, can be found in [3, Chapter 6].

2.2. Submersions. We will need a fact from differential geometry related to sub-
mersions. Suppose we have a C1-map Φ : Rn → Rm where n ≥ m. We say that
Φ is a submersion at a point x if the derivative DΦ|x of Φ at x has rank m. The
following result is known as the Submersion Theorem and can be found in any
introductory text on differential geometry.

Theorem 2.2. Suppose Φ : Rn → R
m is a C1-map, where n ≥ m. If Φ is a

submersion at a point x, then there are open sets A ⊂ Rn and B ⊂ Rm with x ∈ A,
Φ(x) ∈ B, and Φ(A) = B. Moreover, there is a C1-map Ψ : B → A such that Φ◦Ψ
is the identity on B and Ψ(Φ(x)) = x.

3. A theorem about finite subsets of �np

In this section we establish a preliminary result that may be of independent
interest. Suppose that Z is a metric space on a sequence of points (zi)

n
i=1 and Y is

a metric space on a sequence of points (yi)
n
i=1. We say that Y is an ε-perturbation

of Z if for each pair i, j we have that |dZ(zi, zj)− dY (yi, yj)| < ε.
In finite dimensions, the phrase almost all will only be used with respect to

Lebesgue measure. Throughout this section, we fix some n ∈ N and p ∈ R with
1 < p < ∞. We denote by ‖.‖ the p-norm on �np .

Theorem 3.1. For almost all n-point subsets X of �np , there is an ε > 0 such that
if Y is an ε-perturbation of X, then Y isometrically embeds into �np .

For our purposes, we will need a slightly stronger property of an n-point subset
X of �np . We will need that an ε-perturbation of X isometrically embeds into �np
in a way that depends continuously on the perturbation (in a way we will make
precise below). This is the content of Theorem 3.2 below, from which Theorem 3.1
will easily follow. To state Theorem 3.2 we will first develop some notation.

Let M = Mn = R
n × · · · × R

n︸ ︷︷ ︸
n times

and let U = Un denote the n×n upper triangular

matrices with 0 on the diagonal. We let e1, . . . , en be the standard basis of Rn and
let eji be the element of M with ej in the ith coordinate and zero everywhere else.

Note that eji , 1 ≤ i, j ≤ n, form a basis of M . Given x = (x1, . . . , xn) ∈ M we
denote the jth coordinate (with respect to the standard basis) of the vector xi as

xj
i so that x =

∑
i,j x

j
ie

j
i . Let Eij be the n×n matrix with 1 in the (i, j)-entry and

0 elsewhere. Note that Eij , 1 ≤ i < j ≤ n, forms a basis for U , so the dimension of
U is

(
n
2

)
.
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We define the map F = Fn : M → U by

F (x1, . . . , xn) = (‖xi − xj‖p)1≤i<j≤n.

We observe that F is a C1-map. Indeed, by computing the partial derivatives in
the direction ekl we get

(1)
∂F

∂ekl
(z1, . . . , zn) =

(
p|zki − zkj |p−1 sgn(zki − zkj )(δil − δjl)

)
1≤i<j≤n

,

and these are evidently continuous. Theorem 3.1 says that F is locally open at
almost all n-tuples (x1, . . . , xn). This is contained in the following theorem.

Theorem 3.2. Let F : M → U be defined as above. Set G = Gn = {x ∈ M :
DF |x has rank

(
n
2

)
}. Then G is an open subset of M whose complement has mea-

sure zero (and is thus nowhere dense). Moreover, given x ∈ G, there is an open
subset A of M containing x, an open subset B of U containing F (x), and a C1-map
Φ : B → A such that F ◦ Φ = IdB and Φ(F (x)) = x.

Let us briefly spell out how Theorem 3.1 follows from Theorem 3.2. Suppose
that {x1, . . . , xn} is an n-point subset of �np and that x = (x1, . . . , xn) ∈ G. Define
Xij = ‖xi−xj‖p and X = (Xij)1≤i<j≤n. Then, since x ∈ G, by Theorem 3.2 there

are open subsets A ofM and B of U such that x ∈ A, F (x) = X ∈ B and F (A) = B.
Thus there is some ε > 0 such that if |Yij −Xij | < ε for all i, j, then (Yij)1≤i<j≤n

is an element of B and thus is the image under F of some y = (y1, . . . , yn) ∈ A.
Hence Y defines a metric on an n-point set and the resulting metric space embeds
isometrically into �np . This is slightly more than the statement that ε-perturbations
of the metric space {x1, . . . , xn} with the inherited metric embed isometrically into
�np .

Proof of Theorem 3.2. We first show that G is open. Indeed, if x ∈ G, then there
is a linear map B : U → M such that DF |x ◦ B = IdU . Since DF is continuous,
there is some ε > 0 such that whenever y is such that ‖x − y‖ < ε, ‖DF |y ◦ B−
IdU‖ < 1. Thus, DF |y ◦B is invertible and DF |y has full rank.

We now show that M \ G has measure zero. Once we do this, the proof of the
theorem is then complete. Indeed, the rest of the statement of Theorem 3.2 follows
immediately from the Submersion Theorem.

The proof that M \G has measure zero is done in several steps. We first identify
a certain subset of G.

Lemma 3.3. Let H = {(x1, . . . , xn) ∈ M : xi = ei +
∑n

j=i+1 x
j
iej for each i =

1, . . . , n}. Then if x ∈ H, the partial derivatives ∂F
∂ekl

(x), 1 ≤ k < l ≤ n, are linearly

independent. In particular, H ⊂ G.

Proof. Fix x = (x1, . . . , xn) ∈ H. By (1) we see that the (i, j)-entry of ∂F
∂ekl

(x) is

zero unless j = l and i ≤ k. We can hence expand ∂F
∂ekl

(x) in terms of the matrices

Ekl as

∂F

∂ekl
(x) = −pEkl +

k−1∑
i=1

αk
i Eil,

where αk
i are constants depending on x. It follows by induction on k that Ekl is in

the span of ∂F

∂eji
(x) for all 1 ≤ k < l ≤ n. This completes the proof of the lemma. �
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Let us now define V = {x = (x1, . . . , xn) ∈ M : there are i, j, k ∈ {1, . . . , n} such
that i �= j and xk

i = xk
j }. Note that M \V has finitely many connected components

which are open and convex. Since μ(V ) = 0, in order to show that μ(M \G) = 0,
it suffices to show that μ(C \G) = 0 for every connected component C of M \ V .
The following lemma will be vital to this aim.

Lemma 3.4. Suppose that x = (x1, . . . , xn) and y = (y1, . . . , yn) are two points in
the same connected component of M \ V , and suppose that ∂F

∂eji
(x), 1 ≤ i < j ≤ n,

are linearly independent. Then, for all but finitely many values of t ∈ [0, 1], the
partial derivatives ∂F

∂eji
((1 − t)x + ty), 1 ≤ i < j ≤ n, are linearly independent. In

particular, for all but finitely many values of t ∈ [0, 1], we have that (1−t)x+ty ∈ G.

Proof. Define J to be the set {(k, l) : 1 ≤ k < l ≤ n}. For σ = (i, j) ∈ J we

will write eσ = eji , and for X ∈ U we will write Xσ for the (i, j)-entry of X. By

assumption, the J × J matrix given by (( ∂F
∂eσ

(x))ρ) has nonzero determinant. We

now define a function g : [0, 1] → R by setting

g(t) = det

((
∂F

∂eσ
((1− t)x+ ty)

)
ρ

)
= det(X(t)).

Using (1) and the fact that x and y are from the same component of M \V , for each
σ, ρ ∈ J , the matrix X(t) has (σ, ρ)-entry p(aσ,ρt+ bσ,ρ)

p−1εσ,ρ, where aσ,ρ and bσ,ρ
are nonzero constants with aσ,ρt+ bσ,ρ > 0 for all t ∈ [0, 1] and εσ,ρ ∈ {−1, 0, 1}.

By compactness there is an open connected subset U of C containing [0, 1] such
that the real part of aσ,ρt + bσ,ρ is positive for each t ∈ U . It follows that the
function g extends analytically to all of U , and therefore by the identity principle
(and the fact that g(0) is nonzero), g has at most finitely many zeroes in [0, 1]. �

Consider the subset R of M defined by

R = {(x1, . . . , xn) ∈ M : xi
i > xi

j for each 1 ≤ i < j ≤ n}.
Note that for each component C of M \ V either C ⊂ R or C ∩ R = ∅. We next
show that in order to prove that μ(C \G) = 0 for every component C of M \ V , it
is sufficient to consider components C such that C ⊂ R.

Fix (x1, . . . , xn) ∈ M \ V . Define a permutation π ∈ Sn recursively as follows:
for j = 1, . . . , n, let π(j) be the unique i ∈ {1, . . . , n} \ {π(1), . . . , π(j − 1)} such
that

xj
i > xj

k for all k ∈ {1, . . . , n} \ {π(1), . . . , π(j − 1), i}.
It then follows that xj

π(j) > xj
π(k) for all 1 ≤ j < k ≤ n, and hence (xπ(1), . . . , xπ(n))

∈ R.
Define a map Aπ : M → M by Aπ(y1, . . . , yn) = (yπ(1), . . . , yπ(n)) and a map

Bπ : U → U by Bπ((Xij)1≤i<j≤n) = (Yij)1≤i<j≤n, where

Yij =

{
Xπ(i),π(j) if π(i) < π(j),

Xπ(j),π(i) if π(j) < π(i).

We note that B−1
π FAπ = F , and thus B−1

π DF |Aπ(x)Aπ = DF |x, so to verify that
F has full rank at x, it is sufficient to verify that F has full rank at Aπ(x), which
lies in R. This completes the proof that it is sufficient to show that μ(C \ G) = 0
whenever C is a component of M \ V with C ⊂ R.



ON EMBEDDINGS OF FINITE SUBSETS OF �p 2123

Fix a component C of M \ V with C ⊂ R. If μ(C \G) > 0, then by Lebesgue’s

density theorem, there is a point y ∈ C such that limε→0
μ(Bε)(y)∩(C\G))

μ(Bε(y))
= 1. For

i, j ∈ {1, . . . , n}, define

xj
i =

⎧⎪⎨
⎪⎩
1 if i = j,

1 if yji > yjj ,

0 else.

It is easy to verify that if yki < ykj , then xk
i ≤ xk

j , and thus (1− t)x+ ty ∈ C for all
t ∈ (0, 1]. Moreover, since y ∈ R, we have x ∈ H. It follows by Lemma 3.3 that the
partial derivatives ∂F

∂eji
(x), 1 ≤ i < j ≤ n, are linearly independent. Hence there is

an ε > 0 such that at each z ∈ Bε(x) the same holds, i.e., ∂F
∂eji

(z), 1 ≤ i < j ≤ n,

are linearly independent. Choose t ∈ (0, 1) such that z = (1 − t)x + ty ∈ Bε(x).
Then z ∈ Bε(x) ∩ C, so there is some δ > 0 such that Bδ(z) ⊂ Bε ∩ C.

The Lebesgue density at y is equal to 1, so by making δ smaller, we may assume
that Bδ(y) ⊂ C and μ(Bδ(y)\G) > 0. By Lemma 3.4, each line in the direction y−x
through a point in Bδ(z) intersects Bδ(y) \G in at most finitely many points. The
lines in the direction y−x through Bδ(z) can be parametrised whereby they intersect
the hyperplane through z whose normal is y − x. This is a (

(
n
2

)
− 1)-dimensional

hyperplane. The measure of Bδ(y) \G can be given, by Fubini’s theorem, as

μ(Bδ(y) \G) =

∫
R
(n2)−1

∫
[as,bs]

1L(s)∩Bδ(y)\Gdμ
′ds,

where L(s) is the line through the point s in the previously mentioned hyperplane
going through s, [as, bs] is the interval for which the line L(s) intersects the sphere
Bδ(y), and μ′ is 1-dimensional Lebesgue measure. This integral is equal to zero, as
L(s) ∩ Bδ(y) \ G is finite. This is a contradiction on y being a point of Lebesgue
density, and thus of C \ G having nonzero measure. Thus μ(C \ G) = 0 and the
proof of Theorem 3.2 is complete. �

4. The proof of Theorem 1.5

Given a subset M = {m1, . . . ,mn} of N with m1 < m2 < · · · < mn, if x =
(xi)

∞
i=1 ∈ �p or x = (xi)

N
i=1 ∈ �Np with N ≥ mn, we define PM (x) = (xm1

, . . . , xmn
).

If N ∈ N, we write PN instead of P{1,...,N}.

We say that an n-tuple (x1, . . . , xn) in �p (or �Np ) has Property K if there is an
M ⊂ N (or M ⊂ {1, . . . , N}, respectively) of size n such that (PMx1, . . . , PMxn) ∈
Gn, where Gn is the set defined in Theorem 3.2. Note that the set of n-tuples with
property K is open since the set Gn is open.

We prove Theorem 1.5 by showing that the closed set of n-tuples without Prop-
erty K is Haar null (and thus nowhere dense) and that an n-tuple with Property K
embeds isometrically into a Banach space that satisfies the assumption of Theorem
1.5. We will need three lemmas.

Lemma 4.1. Suppose that x = (x1, . . . , xn) is an n-tuple in �p with Property K.
Then there is some N ∈ N, and vectors y1, . . . , yn ∈ �Np such that ‖yi − yj‖ =
‖xi − xj‖, and the n-tuple (y1, . . . , yn) has Property K.

Remark 4.2. This is the variant of Ball’s result mentioned in the Introduction. Here
‖.‖ denotes the �p norm.
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Proof of Lemma 4.1. Let M ⊂ N be such that |M | = n and (PMx1, . . . , PMxn) ∈
Gn. After an isometry (permuting the indices), we may assume without loss of
generality that M = {1, . . . , n}. Then, since (Pnx1, . . . , Pnxn) ∈ Gn and Gn is
open, there is some ε > 0 such that if zi ∈ �np and ‖zi−Pnxi‖ < ε, then (z1, . . . , zn) ∈
Gn.

Since (Pnx1, . . . , Pnxn)∈Gn, by Theorem 3.2, there are open setsA � (Pnx1, . . . ,
Pnxn), B � F (Pnx1, . . . , Pnxn), and a C1-map Φ : B → A such that F ◦ Φ = IdB
and Φ(F (x)) = x.

Fix N ≥ n, and define ρij = ρij(N) by ‖xi − xj‖p = ‖PNxi − PNxj‖p + ρij .
Since ρij → 0 as N → ∞, there is an N > n such that the element Z = Z(N) =
(‖Pnxi −Pnxj‖p + ρij)1≤i<j≤n of U is in the set B. Set z = z(N) = (z1, . . . , zn) =
Φ(Z). By the continuity of Φ at the point F (Pnx1, . . . , Pnxn), if N is sufficiently
large, then ‖zi − Pnxi‖ < ε, and hence (z1, . . . , zn) ∈ Gn.

We now define the points y1, . . . , yn ∈ �Np by

• Pnyi = zi,
• (PN − Pn)yi = (PN − Pn)xi.

We now verify that (y1, . . . , yn) has Property K and that ‖yi − yj‖ = ‖xi − xj‖.
The first of these is clear, (Pny1, . . . , Pnyn) is in Gn by construction.

To verify that ‖yi − yj‖ = ‖xi − xj‖, note that

‖yi − yj‖p = ‖Pnyi − Pnyj‖p + ‖(PN − Pn)yi − (PN − Pn)yj‖p,

which is equal to

‖zi − zj‖p + ‖(PN − Pn)xi − (PN − Pn)xj‖p.

By the definition of (z1, . . . , zn), we see that ‖zi− zj‖p = ‖Pnxi−Pnxj‖p+ρij . By
the definition of ρij , we thus get that ‖yi − yj‖p = ‖xi − xj‖p. �

We have now shown that if a subset of �p has Property K, then it is isometric
to a subset of �Np with Property K. We next show a slight variant of Theorem 3.2.

Lemma 4.3. Suppose x = (x1, . . . , xn) is an n-tuple in �Np , N ≥ n, with Property
K. Then there is some ε > 0 such that any ε-perturbation of X can be embedded
into �Np with the embedding depending continuously on the perturbation.

At the beginning of the proof of Lemma 4.3 we will make it clear what continuous
dependence on the perturbation means in a way similar to the precise statement of
Theorem 3.2.

Proof. Define F̃ : RN × · · · × R
N︸ ︷︷ ︸

n times

→ Un by

F̃ (y1, . . . , yn) = (‖yi − yj‖)1≤i<j≤n ,

where we note that there is no pth power of the norm. Our goal is to show that
there is an open subset B̃ of Un and a continuous map Ψ : B̃ → R

N × · · · × R
N︸ ︷︷ ︸

n times

such that:

• F̃ (x) ∈ B̃,

• Ψ(F̃ (x)) = x,

• F̃ ◦Ψ = IdB̃ .
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Let M ⊂ {1, . . . , N} be such that |M | = n and (PMx1, . . . , PMxn) ∈ Gn. Again,
without loss of generality, we may assume that M = {1, . . . , n}.

By Theorem 3.2, there exist open sets A � (Pnx1, . . . , Pnxn), B �
F (Pnx1, . . . , Pnxn) and a C1-map Φ : B → A such that Φ(F (Pnx1, . . . , Pnxn)) =
(Pnx1, . . . , Pnxn) and F ◦Φ = IdB . Fix ε > 0 such that if Y = (Yij)1≤i<j≤n is such
that |Yij − ‖xi − xj‖p| < ε, then Y ∈ B.

Choose δ= δ(ε)> 0 to be specified later. We set B̃= {Y ∈Un : |Yij−‖xi−xj‖|
< δ for all pairs i, j}.

Fix Y = (Yij)1≤i<j≤n ∈ B̃. We define Ψ(Y ) similarly to the definition of the
points (y1, . . . , yn) in the proof of Lemma 4.1. Define ρij = Yij − ‖xi − xj‖ and
εij = εij(Y ) by (‖xi − xj‖ + ρij)

p = ‖xi − xj‖p + εij . If |ρij | is sufficiently small
(i.e., our choice of δ is sufficiently small), then (‖Pnxi −Pnxj‖p + εij)1≤i<j≤n is in
B. Define zi = Φ((‖Pnxi − Pnxj‖p + εij)1≤i<j≤n). We then set Ψ(Y ) to be the
n-tuple (y1, . . . , yn) where:

• Pnyi = zi,
• (PN − Pn)yi = xi.

We verify that ‖yi − yj‖ = ‖xi −xj‖+ ρij = Yij , i.e., that F̃ (Ψ(Y )) = Y , as this
is the only one of the three properties listed above that is nontrivial.

Indeed,

‖yi − yj‖p = ‖Pnyi − Pnyj‖p + ‖(PN − Pn)yi − (PN − Pn)yj‖p,
which (by the definition of yi) equals

‖zi − zj‖p + ‖(PN − Pn)xi − (PN − Pn)xj‖p,
and this is equal (by the definition of zi) to

‖xi − xj‖p + εij .

By the definition of εij , this is equal to (‖xi−xj‖+ ρij)
p, which is as required. �

Our next lemma shows that if we have an n-point subset of �Np with Property
K, then it embeds isometrically into any Banach space satisfying the assumption of
Theorem 1.5. This result is, in some sense, dual to Theorem 3.1. Where Theorem
3.1 says small perturbations of the metric space embed into the Banach space, this is
saying that the metric space embeds into small perturbations of the Banach space.

Lemma 4.4. Suppose x = (x1, . . . , xn) is an n-tuple in �Np , N ≥ n, with Property

K. Then there is some δ > 0 such that if d(E, �Np ) < 1 + δ, then {x1, . . . , xn} with

the metric inherited from �Np embeds isometrically into E.

Proof. Let F̃ , B̃, and Ψ be as in the proof of Lemma 4.3. Choose ε > 0 such that if
Y = (Yij)1≤i<j≤n ∈ U , |Yij − ‖xi − xj‖| < ε, then Y ∈ B̃. Fix some δ > 0 and let
E be an N -dimensional Banach space such that d(E, �Np ) < 1+ δ. We will find the
value of δ later, and it will be expressed in terms of x and ε only. We may assume
that E = (RN , ‖.‖E) and that the norm on E satisfies ‖y‖E ≤ ‖y‖ ≤ (1 + δ)‖y‖E ,
where ‖.‖ denotes the �p norm.

Let ρ = (ρij)1≤i<j≤n be an element of the space [0, ε](
n
2). We define a metric

space Z(ρ) as follows:

• Z(ρ) is a metric space on n distinct points z1, . . . , zn.
• d(zi, zj) = ‖xi − xj‖+ ρij .
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By the choice of ε, and since F̃ ◦ Ψ = IdB̃ , it follows that Z(ρ) is a metric space
isometric to a subset of �Np . Through slight abuse of notation, in what follows we
identify Z(ρ) with its distance matrix, i.e., Z(ρ) = (d(zi, zj))1≤i<j≤n.

Now define ϕ : [0, ε](
n
2) → [0, ε](

n
2) by

ϕ(ρ) = (‖xi − xj‖+ ρij − ‖Ψ(Z(ρ))i −Ψ(Z(ρ))j‖E)1≤i<j≤n .

We claim that if δ is sufficiently small, then ϕ is well defined. To see that ϕ(ρ)ij > 0,
note that ϕ(ρ)ij ≥ ‖xi − xj‖ + ρij − ‖Ψ(Z(ρ))i − Ψ(Z(ρ))j‖ = 0, where we have
used that ‖y‖ ≥ ‖y‖E for all y ∈ R

N .
On the other hand, ϕ(ρ)ij ≤ ‖xi − xj‖ + ρij − 1

1+δ‖Ψ(Z(ρ))i − Ψ(Z(ρ))j‖ =
δ

δ+1 (‖xi − xj‖ + ρij), where we have used that ‖y‖ ≤ (1 + δ)‖y‖E for all y ∈ R
N .

So if δ is sufficiently small, then this is less than ε.

Since ϕ is a continuous map from a compact convex subset of R(
n
2) to itself, it

follows from Brouwer’s fixed point theorem that ϕ has a fixed point ρ. Letting
(y1, . . . , yn) = Ψ(Z(ρ)), the map sending xi to yi is an isometric embedding of
{x1, . . . , xn} into E. �

Remark 4.5. Suppose we had x1, . . . , xn∈�p such that the map F̃ : �p×. . .×�p︸ ︷︷ ︸
n times

→U ,

F̃ (y1, . . . , yn) = (‖yi−yj‖)1≤i<j≤n, had a continuous right inverse at F̃ (x1, . . . , xn).
Then an identical argument to the proof of Lemma 4.4 would show that there is
some δ > 0 such that if d(Y, �p) < 1 + δ, then Y contains an isometric copy of
{x1, . . . , xn}. Since the assumption in Theorem 1.5 is weaker than the Banach space
containing an isomorphic copy of �p, we had to choose a more technical version of

Property K than simply “F̃ has a continuous right inverse at (x1, . . . , xn)”. This
stronger assumption also motivated Lemma 4.1.

We now give the proof of Theorem 1.5.

Proof of Theorem 1.5. By a combination of Lemmas 4.1, 4.3 and 4.4, we see that if
an n-tuple (x1, . . . , xn) in �p has Property K, then there is some N ∈ N and δ > 0
such that if Y is a Banach space with d(Y, �Np ) < 1 + δ, then {x1, . . . , xn} with

the metric inherited from �Np embeds isometrically into Y . By Krivine’s theorem,
Theorem 2.1, any Banach space X satisfying the assumption of the theorem (i.e.,
containing the spaces �np , n ∈ N, uniformly) contains a subspace Y with d(Y, �Np ) <

1 + δ. Thus {x1, . . . , xn} with the metric inherited from �Np embeds isometrically
into X.

To conclude, we just need to show that the set A of all n-tuples that do not have
Property K is Haar null. Indeed, the intersection of A with the finite-dimensional
space �np × · · · × �np is contained in the complement of Gn, which by Theorem
3.2 has measure zero. Note also that A is translation-invariant. Thus, by the
characterization of Haar null sets stated in Section 2.1, A is Haar null. Since A is
closed, it follows that A is nowhere dense. �

5. Further remarks and open problems

In this section we give some remarks on the special cases of �2, �∞, and �1, and
pose some open problems.

In the case �2, we deduce Theorem 1.3 from our results.
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Theorem 5.1. Every finite affinely independent subset of �2 isometrically embeds
into every infinite-dimensional Banach space X.

Proof. First note that every affinely independent set has a linearly independent
translate, so without loss of generality, we may reduce to the case of linearly in-
dependent sets. Let e1, e2, . . . be an orthonormal basis of �2. If {x1, . . . , xn} is a
linearly independent subset of �2, then there is some isometry Θ such that Θ(x1) ∈
span{e1}, Θ(x2) ∈ span{e1, e2}, etc. Such a Θ is constructed by induction and the
Gram–Schmidt process applied to the vectors {x1, . . . , xn}. Then a minor variant
of Lemma 3.3 (in which the coefficient of ei in xi is nonzero, but not necessarily one)
shows that the n-tuple (x1, . . . , xn) belongs to Gn. Thus (Θx1, . . . ,Θxn) (which is
isometric to (x1, . . . , xn)) has Property K.

Applying Lemma 4.4 to (Θx1, . . . ,Θxn) we see that there exist some δ > 0
such that whenever E is an n-dimensional Banach space with d(E, �n2 ) < 1 + δ,
then (Θx1, . . . ,Θxn) embeds isometrically into E. By Dvoretzky’s theorem, if X
is infinite dimensional, there is a subspace Z of X such that d(Z, �n2 ) < 1 + δ,
and thus Z contains an isometric copy of (Θx1, . . . ,Θxn) (which is isometric to
(x1, . . . , xn)). �

In the case of �∞, the proof of Theorem 1.4 (given as Theorem 4.3 in [8]) essen-
tially proceeds by directly showing that if (x1, . . . , xn) is a concave metric space,

then the mapping F̃ is locally open at (x1, . . . , xn). This argument does not use
differentiation: the norm on �∞ is easy to compute.

In the case of �1, the majority of the proofs in this paper simply do not work.
In the case p = 1 the computation of the derivative (Equation (1)) yields ∂F

∂ekl
=

(sgn(xk
i − xk

j )1≤i<j≤n). Thus the function is locally open if the collection forms
linearly independent matrices. This is, however, not the case on a large set as it is
for the case 1 < p < ∞. However, if it is true at a point x = (x1, . . . , xn), the rest
of the proofs presented here work identically.

We now list some open problems. The case p = 2 was originally raised by
Ostrovskii in [12], who asked:

Question 3. Let X be an infinite-dimensional Banach space and A a finite subset
of �2. Then does A isometrically embed into X?

The general question of Ostrovskii, given in [11], still remains open.

Question 4. Let X be an infinite-dimensional Banach space containing �p isomor-
phically. Then does every finite subset of �p embed isometrically into X?

The way we approached this question leads to the following natural variant.

Question 5. Let X be an infinite-dimensional Banach space that uniformly con-
tains �np , n ∈ N. Then does every finite subset of �p embed isometrically into X?

As detailed in the introduction, there can be no positive results in the cases
p = 1 and p = ∞. However, the known partial answers lead to the following open
question.

Question 6. Let p = 1 or p = ∞. Which n-point subsets of �p embed isometrically
into any Banach space X that uniformly contains the spaces �np , n ∈ N?
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