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EXPRESSION OF TIME ALMOST PERIODIC TRAVELING

WAVE SOLUTIONS TO A CLASS OF COMPETITION

DIFFUSION SYSTEMS

FANG LI AND BENDONG LOU

(Communicated by Wenxian Shen)

Abstract. In this paper we consider a class of competition diffusion systems
with time almost periodic coefficients. We show that any almost periodic
traveling wave solution to such a system is given by a decomposition formula,
that is, each component of the solution equals the product of the corresponding
diffusion coefficient and the classical traveling wave solution (with a different
time scale).

1. Introduction

In this paper we present the expression of traveling wave solutions to the following
time almost periodic system:

(P) (ui)t = μid(t)(ui)xx + ui

[
r(t)−

n∑
j=1

aijuj

]
, i = 1, 2, · · · , n,

where d(t) and r(t) are continuous almost periodic functions (see Definition 3.1)
with positive lower bounds, μi, aij are positive real numbers, and ui(x, t) denotes
the population density of the i-th competing species at position x and time t. This
model is a special kind of competition diffusion system, which is used in ecology
problems to describe n species moving by diffusion, with competition amongst the
species. Time almost periodic coefficients allow one to take into account general
seasonal variations.

We are interested in the traveling wave solutions to the system (P). In case n = 1,
that is, the system is a scalar equation, the study of traveling wave solutions traces
back to the pioneer works of R. Fisher [6] and A. Kolmogorov et al. [13]. They
proved that the diffusive logistic equation,

ut = uxx + u(1− u),

has (classical) traveling wave solutions of the form u(x, t) = φ(x−ct) for each c ≥ 2.
In the 2000s the authors of [9, 10, 14–16] studied the equation,

(1.1) ut = uxx + f(u, t),
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with f(u, t) being monostable in u and periodic in t, like f = u(r(t)− u) for some
positive periodic r (they actually studied much more general equations involving
shear flows or time-delays). Among others, they obtained the time periodic traveling
wave solutions, which have the form φ(x− ct, t) for some bounded function φ(z, t)
being monotone in z and periodic in t. In fact, this kind of solution was first studied
in [1] in 1999, for the equation (1.1) with bistable nonlinearity. Also in 1999, in a
series of papers [17, 18], W. Shen considered (1.1) with f being bistable in u and
almost periodic in t. It turns out that, the traveling wave solution in this case is a
time almost periodic one (see Definition 1.1 below).

In case n ≥ 2, (P) is a competition diffusion system. There are also a lot of
studies about the traveling wave solutions, especially for the homogeneous system:

(P0) (wi)t = μi(wi)xx + wi

[
r0 −

n∑
j=1

kijwj

]
, i = 1, 2, · · · , n,

where μi, r0, kij are all positive real numbers. A traveling wave solution to this
system is a solution (w1, · · · , wn) with the form

wi(x, t) = φi(x− ct) for some c ∈ R and all i = 1, · · · , n,
φi(±∞) = α±

i , both (α−
1 , · · · , α−

n ) and (α+
1 , · · · , α+

n ) are constant stationary solu-
tions to (P0) (cf. [5,7,11,12,19,20], etc.). When d(t) and r(t) in (P) are T -periodic
functions, the traveling wave solutions should be periodic ones with the form

ui(x, t) = φi(x− ct, t) for some c ∈ R and all i = 1, · · · , n,
with φi(z, t) being T -periodic in t, φi(±∞, t) = α±

i (t), both (α−
1 (t), · · · , α−

n (t)) and
(α+

1 (t), · · · , α+
n (t)) are T -periodic solutions to the related kinetic system

(1.2) (ui)t = ui

[
r(t)−

n∑
j=1

aijuj

]
, i = 1, 2, · · · , n.

This kind of wave has been studied in [2,21], etc. Furthermore, if d and r in (P) are
almost periodic in t, the traveling wave solutions should be almost periodic ones,
and can be defined as follows (cf. [17, 18]):

Definition 1.1. A solution (u1, · · · , un) of (P) is called an almost periodic traveling
wave solution connecting (α−

1 (t), · · · , α−
n (t)) with (α+

1 (t), · · · , α+
n (t)) if

(1) for each i = 1, 2, · · · , n, ui(x, t) = Φi(x − c(t), t) for some Φi(z, t) ∈
C1(R × R,R), which is almost periodic in t uniformly with respect to z
in bounded sets;

(2) for each i = 1, 2, · · · , n, Φi(±∞, t) = α±
i (t), where (α−

1 (t), · · · , α−
n (t)) and

(α+
1 (t), · · · , α+

n (t)) are almost periodic solutions to the kinetic system (1.2);
(3) c′(t) is almost periodic in t.

Note that most studies on traveling wave solutions concern their existence and
stability rather than their explicit expressions. Especially, in time-dependent cases,
very little is known about the wave profiles and the propagating speeds. The
aim of this paper is to give the expressions for almost periodic traveling wave
solutions to (P) by using a decomposition formula. As can be seen in Section 3,
one can specify the profiles, the instantaneous speeds and the limiting functions
of the traveling wave solutions clearly by such expressions. The expressions are
explicit in the sense that each component of the wave is expressed as the product
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of the diffusion coefficient μid(t) and the classical traveling wave solution to the
homogeneous system (P0) (with different time scale).

This paper is organized as follows. In Section 2 we present a decomposition
formula by using the idea in [4]. In Section 3 we give the expression of almost
periodic traveling wave solutions to (P). In Section 4 we present some examples,
whose almost periodic traveling wave solutions are given by exact formulas.

2. A decomposition formula

In this section we present a decomposition formula for the solutions to (P).

Theorem 2.1. Let (w1, · · · , wn) be a solution to (P0). Assume r(t) is a positive
continuous function (not necessarily to be almost periodic) and d(t) is a positive
solution to the following scalar logistic equation:

(2.1) d′(t) = d(t)
[
r(t)− r0d(t)

]
.

If aij in (P) satisfies

(2.2) μjaij = kij , i, j = 1, 2, · · · , n,

then (u1, u2, · · · , un) given by

(2.3) ui(x, t) = μid(t) · wi

(
x,

∫ t

0

d(s)ds
)
, i = 1, 2, · · · , n,

is a solution to (P).

Proof. Denote τ :=
∫ t

0
d(s)ds. For each i = 1, · · · , n, by a direct calculation we

have

(ui)t = μid
′(t)wi(x, τ ) + μid

2(t)(wi)τ (x, τ ), (ui)xx = μid(t)(wi)xx(x, τ ).

Using (2.1) and (2.2) one concludes that

(ui)t − μid(t)(ui)xx = μid(t)[r(t)− r0d(t)]wi + μid
2(t) wi

[
r0 −

n∑
j=1

kijwj

]

= ui

[
r(t)−

n∑
j=1

kijd(t)wj

]
= ui

[
r(t)−

n∑
j=1

aijuj

]
.

This shows that (u1, · · ·un) is a solution to (P). �

Remark 2.2. The equality in (2.3) is a diffusive version of the decomposition for-
mula for time-perturbed Lotka-Volterra systems of ordinary differential equations,
which was first discovered by X. Chen, J. Jiang and L. Niu in [4], where the authors
proved that every solution for time-perturbed Lotka-Volterra systems with identical
intrinsic growth rate is expressed as the product of a solution for the corresponding
deterministic Lotka-Volterra system without perturbation and the solution of the
scalar logistic equation. Using this formula, they proved that the skew-product
flow generated by the almost periodic Lotka-Volterra systems is totally determined
by the long-term behavior for the corresponding deterministic systems and thor-
oughly classified the dynamics on three dimensional almost periodic Lotka-Volterra
systems.



2166 F. LI AND B. LOU

Remark 2.3. It is not difficult to verify that the decomposition formula (2.3) remains
valid for some other systems. For example, it applies to

(1). reaction-diffusion-advection systems like

(ui)t = μid(t)(ui)xx + βid(t)(ui)x + ui

[
r(t)−

n∑
j=1

aijuj

]
, i = 1, · · · , n;

(2). competition systems with nonlocal dispersal

(ui)t = μid(t)

∫
R

κ(y − x)ui(y, t)dy

− μid(t)ui(x, t) + ui

[
r(t)−

n∑
j=1

aijuj

]
, i = 1, · · · , n.

Hence, the decomposition formula for the almost periodic traveling wave solutions
to (P) (see (3.1) in the next section) remains valid for the traveling wave solutions
to these two systems.

Remark 2.4. The system (P) we considered here is a special one in the sense that all
the species have synchronic diffusion coefficients μid(t), the same intrinsic growth
rate r(t), and time-independent interacting coefficients aij . These restrictions, how-
ever, cannot be omitted simply. For example, if we replace μid(t) by di(t) as the

diffusion coefficients, then the new time scale τ should be replaced by τi =
∫ t

0
di(s)ds

which are different from each other, and so, wi(x, τi) cannot be unified in one for-
mula since they have different time scales. For the same reason, neither r(t) nor
aij can be extended to more general cases simply.

3. Expression of almost periodic traveling wave solutions

In this section we show that each almost periodic traveling wave solution is given
by a decomposition formula.

3.1. Almost periodicity. A set A ⊂ R is called relatively dense in R if there
exists M > 0 such that any interval of the form [b, b+M ] contains a point in A.

Definition 3.1. A bounded continuous function g : R → R is called almost periodic
in the sense of Bohr if, for any ε > 0, the following set is relatively dense in R:

Aε := {a ∈ R | ‖g(a+ ·)− g(·)‖L∞(R) < ε}.

For any almost periodic function g : R → R, it has a mean value which is defined
by

M{g} := lim
T→+∞

1

T

∫ T

0

g(s)ds.

For a condition to guarantee that an indefinite integral for an almost periodic
function with zero mean value is also almost periodic, we refer to [4, Proposition
5.8]. Denote

A := {g(t) | g : R → R is almost periodic, with M{g} > 0}.

From [4, Lemma 5.6], we have the following result.
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Lemma 3.2. Assume r(t) ∈ A. Then the equation (2.1) has a unique, stable
almost periodic positive solution

d(t) =
1

r0

(∫ t

−∞
exp{

∫ s

t

r(τ )dτ}ds
)−1

.

Furthermore, M{d} = M{r} and
∫ t

0
d(s)ds = +∞.

3.2. Expression of the traveling wave solutions.

Theorem 3.3. Let (w1, · · · , wn) with wi(x, t) = φi(x − ct) (i = 1, 2, · · · , n) be
a traveling wave solution of (P0) with φi(±∞) = α±

i , where (α−
1 , · · · , α−

n ) and
(α+

1 , · · · , α+
n ) are constant stationary solutions to (P0). Assume r ∈ A, d(t) is the

unique positive almost periodic solution of (2.1) and μjaij = kij (i, j = 1, · · · , n).
Then (u1, · · · , un) given by

(3.1) ui(x, t) = μid(t) · φi

(
x− c

∫ t

0

d(s)ds
)
, i = 1, · · · , n,

is an almost periodic traveling wave solution to (P).

Proof. By Theorem 2.1, (u1, · · · , un) with ui defined by (3.1) is a solution to (P).
We only need to show that it is an almost periodic traveling wave solution as in

Definition 1.1. Denote c(t) := c
∫ t

0
d(s)ds. Then for each i = 1, · · · , n,

ui(x, t) = Φi(x− c(t), t) := μid(t) · φi(x− c(t)).

Clearly, Φi(z, t) = μid(t)φi(z) is almost periodic in t, and Φi(±∞, t) = μid(t)α
±
i .

Now we show that (μ1α
±
1 d(t), · · · , μnα

±
n d(t)) are solutions to the kinetic system

(1.2). In fact, (α−
1 , · · · , α−

n ) is a constant stationary solution to (P0), so we have

(3.2) α−
i

(
r0 −

n∑
j=1

kijα
−
j

)
= 0, i = 1, · · · , n.

For any i = 1, · · · , n, if α−
i = 0, then μiα

−
i d(t) ≡ 0, it clearly satisfies the i-th

equation in (1.2). If α−
i 	= 0, then r0 =

n∑
j=1

kijα
−
j by (3.2). Combining this equality

with (2.1) and (2.2) we have

[μiα
−
i d(t)]

′ = [μiα
−
i d(t)]

(
r(t)− r0d(t)

)
= [μiα

−
i d(t)]

(
r(t)−

n∑
j=1

aij [μjα
−
j d(t)]

)
,

that is, the i-th equation in (1.2) holds. This proves that (μ1α
−
1 d, · · · , μnα

−
n d) is a

solution to (1.2). The proof for (μ1α
+
1 d, · · · , μnα

+
n d) is similar.

Finally, c′(t) = cd(t) is almost periodic by Lemma 3.2. �

Remark 3.4. From this theorem we see that, if a traveling wave solution can be
expressed by (3.1), then its profile, instantaneous speed and the limiting functions
α±
i (t) are given by

(μ1d(t)φ1(z), · · · , μnd(t)φn(z)), cd(t), (μ1α
±
1 d(t), · · · , μnα

±
n d(t)),

explicitly. Hence, using the decomposition formula (3.1), one can capture the fea-
ture of the almost periodic traveling wave solution clearly.
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In the above theorem we use the assumption that (P0) has traveling wave solu-
tions, which is actually the truth in many cases. First, for scalar equation (n = 1),
we have the following result.

Corollary 3.5. Assume n = 1. Then for any c ≥ 2
√
r0, the (single) equation

(P0) has a traveling wave solution φ1(x− ct), which satisfies φ′
1(z) < 0, φ1(−∞) =

r0/k11, φ1(+∞) = 0. Moreover, when r ∈ A, d satisfies (2.1) and μ1a11 = k11,
and the function

u1(x, t) = μ1d(t) · φ1

(
x− c

∫ t

0

d(s)ds
)

is an almost periodic traveling wave solution to (P).

For case n = 2, the related kinetic system of (P0) always has three equilibria
E0 := (0, 0), E1 := ( r0

k11
, 0), E2 := (0, r0

k22
), and when

(3.3) g :=
k12
k11

, h :=
k21
k22

,

satisfy h, g < 1 or h, g > 1, the kinetic system has a unique coexistence equilibrium
E∗ := (w∗

1 , w
∗
2) given by(

w∗
1

w∗
2

)
=

(
k11 k12
k21 k22

)−1

·
(

r0
r0

)
.

By a phase plane analysis, one knows that E1 is stable and E2 is unstable when
0 < g < 1 < h, and E2 is stable and E1 is unstable when 0 < h < 1 < g, both
are called monostable cases; when h, g < 1, E∗ is stable and this case is called
an coexistence case; both E1 and E2 are stable when h, g > 1 and this is called a
bistable case (cf. [8]). In all of these cases, traveling wave solutions to (P0) (with
n = 2) have been studied extensively. Combining with the decomposition formula
in Theorem 3.3 we have the following results.

Corollary 3.6. Consider (P) and (P0) with n = 2. Let E0, E1, E2, E∗, h and g
be defined as above. Assume r ∈ A, d satisfies (2.1) and μjaij = kij (i, j = 1, 2).

(1) If 0 < g < 1 < h (resp. 0 < h < 1 < g), then there exists c∗ < 0 such that
the system (P0) has a traveling wave solution (φ1(x − ct), φ2(x − ct)) for
each c ≤ c∗, with (φ1(z), φ2(z)) connecting E2 at −∞ and E1 at +∞ (resp.
connecting E1 at −∞ and E2 at +∞; cf. [11, 12]). Moreover, (u1, u2)
defined by (3.1) is an almost periodic traveling wave solution of (P).

(2) If g, h > 1, then the system (P0) has a traveling wave solution (φ1(x −
ct), φ2(x − ct)) for some c ∈ R, with (φ1(z), φ2(z)) connecting E1 at −∞
and E2 at +∞ (cf. [5,7]). Moreover, (u1, u2) defined by (3.1) is an almost
periodic traveling wave solution of (P).

(3) If 0 < g, h < 1, then the system (P0) has a traveling wave solution (φ1(x−
ct), φ2(x − ct)) for some c > 0, with (φ1(z), φ2(z)) connecting E∗ at −∞
and E0 at +∞ (cf. [19, 20]). Moreover, (u1, u2) defined by (3.1) is an
almost periodic traveling wave solution of (P).

4. Examples

Now we give some examples, whose almost periodic traveling wave solutions are
given by exact formulas.
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Example 4.1. Consider (P) and (P0) with n = 1. Assume μ1 = r0 = k11 = 1. By
a direct calculation one can see that (P0) has a traveling wave solution

φ
(
x+

5√
6
t
)
=

[
1

2
+

1

2
tanh

(√
6

12

(
x+

5√
6
t
))]2

.

By Theorem 3.3,

u1(x, t) = d(t) ·
[
1

2
+

1

2
tanh

(√
6

12

(
x+

5√
6

∫ t

0

d(s)ds

))]2

is an almost periodic traveling wave solution of (P) if d is the solution of (2.1).

Example 4.2. Consider (P) and (P0) with n = 2. From [3] we know that, for any
b ∈ (1, 8

3 ), let μ1 = 1, μ2 = 1
3b , r0 = 1, k11 = k22 = 1, k12 = b and k21 = 11

3 − b,
then the system (P0) has a traveling wave solution given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
w1(z) =

1

2
+

1

2
tanh

√
2b

4
z,

w2(z) =
1

4

[
1− tanh

√
2b

4
z

]2

,

with z = x+ 2−b√
2b
t, and

(w1(−∞), w2(−∞)) = (0, 1), (w1(+∞), w2(+∞)) = (1, 0).

By Theorem 3.3, we know that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
u1(x, t) = d(t)

[
1

2
+

1

2
tanh

(√
2b

4

(
x+

2− b√
2b

∫ t

0

d(s)ds

))]
,

u2(x, t) =
d(t)

12b

[
1− tanh

(√
2b

4

(
x+

2− b√
2b

∫ t

0

d(s)ds

))]2

,

is an almost periodic traveling wave solution of (P) if d is the solution of (2.1) as
in Lemma 3.2, and it satisfies{

u1(−∞, t) = 0,

u2(−∞, t) = d(t)
3b ,

{
u1(+∞, t) = d(t),

u2(+∞, t) = 0.

Example 4.3. Consider (P) and (P0) with n = 3. Assume

μ1 = μ2 = μ3 = 1, r0 = 28, k11 = k22 = k33 = 1,

k12 =
22

21
, k13 = 4, k21 =

37

21
, k23 =

3

4
, k31 =

26

21
, k32 =

22

21
;

then (P0) has a traveling wave solution⎧⎪⎨
⎪⎩
w1(z) = 14(1 + tanh z),

w2(z) = 7(1− tanh z)2,

w3(z) =
4
3 (1− tanh2 z),

with z = x+ 4
3 t (cf. [3]), and

(w1(−∞), w2(−∞), w3(−∞)) = (0, 28, 0),

(w1(+∞), w2(+∞), w3(+∞)) = (28, 0, 0).
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By Theorem 3.3 we know that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u1(x, t) = 14d(t)

[
1 + tanh

(
x+ 4

3

∫ t

0
d(s)ds

)]
,

u2(x, t) = 7d(t)
[
1− tanh

(
x+ 4

3

∫ t

0
d(s)ds

)]2
,

u3(x, t) =
4
3d(t)

[
1− tanh2

(
x+ 4

3

∫ t

0
d(s)ds

)]
,

is an almost periodic traveling wave solution of (P) if d is the solution of (2.1) as
in Lemma 3.2, and it satisfies⎧⎪⎨

⎪⎩
u1(−∞, t) = 0,

u2(−∞, t) = 28d(t),

u3(−∞, t) = 0,

⎧⎪⎨
⎪⎩
u1(+∞, t) = 28d(t),

u2(+∞, t) = 0,

u3(+∞, t) = 0.
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