## Expression of time almost periodic traveling wave solutions to a class of competition diffusion systems

HTML articles powered by AMS MathViewer

- by Fang Li and Bendong Lou PDF
- Proc. Amer. Math. Soc.
**146**(2018), 2163-2171 Request permission

## Abstract:

In this paper we consider a class of competition diffusion systems with time almost periodic coefficients. We show that any*almost periodic traveling wave solution*to such a system is given by a decomposition formula, that is, each component of the solution equals the product of the corresponding diffusion coefficient and the classical traveling wave solution (with a different time scale).

## References

- Nicholas D. Alikakos, Peter W. Bates, and Xinfu Chen,
*Periodic traveling waves and locating oscillating patterns in multidimensional domains*, Trans. Amer. Math. Soc.**351**(1999), no. 7, 2777–2805. MR**1467460**, DOI 10.1090/S0002-9947-99-02134-0 - Xiongxiong Bao and Zhi-Cheng Wang,
*Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system*, J. Differential Equations**255**(2013), no. 8, 2402–2435. MR**3082468**, DOI 10.1016/j.jde.2013.06.024 - Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, and Daishin Ueyama,
*Exact travelling wave solutions of three-species competition-diffusion systems*, Discrete Contin. Dyn. Syst. Ser. B**17**(2012), no. 8, 2653–2669. MR**2959245**, DOI 10.3934/dcdsb.2012.17.2653 - Xiaojing Chen, Jifa Jiang, and Lei Niu,
*On Lotka-Volterra equations with identical minimal intrinsic growth rate*, SIAM J. Appl. Dyn. Syst.**14**(2015), no. 3, 1558–1599. MR**3391975**, DOI 10.1137/15M1006878 - C. Conley and R. Gardner,
*An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model*, Indiana Univ. Math. J.**33**(1984), no. 3, 319–343. MR**740953**, DOI 10.1512/iumj.1984.33.33018 - R. Fisher,
*The wave of advance of advantageous genes*, Ann. of Eugenic.,**7**(1937), 355-369. - Robert A. Gardner,
*Existence and stability of travelling wave solutions of competition models: a degree theoretic approach*, J. Differential Equations**44**(1982), no. 3, 343–364. MR**661157**, DOI 10.1016/0022-0396(82)90001-8 - Jong-Shenq Guo and Chang-Hong Wu,
*Recent developments on wave propagation in 2-species competition systems*, Discrete Contin. Dyn. Syst. Ser. B**17**(2012), no. 8, 2713–2724. MR**2959248**, DOI 10.3934/dcdsb.2012.17.2713 - François Hamel,
*Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity*, J. Math. Pures Appl. (9)**89**(2008), no. 4, 355–399 (English, with English and French summaries). MR**2401143**, DOI 10.1016/j.matpur.2007.12.005 - François Hamel and Lionel Roques,
*Uniqueness and stability properties of monostable pulsating fronts*, J. Eur. Math. Soc. (JEMS)**13**(2011), no. 2, 345–390. MR**2746770**, DOI 10.4171/JEMS/256 - Yuzo Hosono,
*Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models*, Numerical and applied mathematics, Part II (Paris, 1988) IMACS Ann. Comput. Appl. Math., vol. 1, Baltzer, Basel, 1989, pp. 687–692. MR**1066073** - Yukio Kan-on,
*Fisher wave fronts for the Lotka-Volterra competition model with diffusion*, Nonlinear Anal.**28**(1997), no. 1, 145–164. MR**1416038**, DOI 10.1016/0362-546X(95)00142-I - A. Kolmogorov, I. Petrovski, and N. Piskunov,
*A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem*, Bull. Moscow Univ. Math. Mech.,**1**(1937), 1-25. - Xing Liang, Yingfei Yi, and Xiao-Qiang Zhao,
*Spreading speeds and traveling waves for periodic evolution systems*, J. Differential Equations**231**(2006), no. 1, 57–77. MR**2287877**, DOI 10.1016/j.jde.2006.04.010 - Jim Nolen and Jack Xin,
*Reaction-diffusion front speeds in spatially-temporally periodic shear flows*, Multiscale Model. Simul.**1**(2003), no. 4, 554–570. MR**2029591**, DOI 10.1137/S1540345902420234 - James Nolen and Jack Xin,
*Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle*, Discrete Contin. Dyn. Syst.**13**(2005), no. 5, 1217–1234. MR**2166666**, DOI 10.3934/dcds.2005.13.1217 - Wenxian Shen,
*Travelling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness*, J. Differential Equations**159**(1999), no. 1, 1–54. MR**1726918**, DOI 10.1006/jdeq.1999.3651 - Wenxian Shen,
*Travelling waves in time almost periodic structures governed by bistable nonlinearities. II. Existence*, J. Differential Equations**159**(1999), no. 1, 55–101. MR**1726919**, DOI 10.1006/jdeq.1999.3652 - Min Ming Tang and Paul C. Fife,
*Propagating fronts for competing species equations with diffusion*, Arch. Rational Mech. Anal.**73**(1980), no. 1, 69–77. MR**555584**, DOI 10.1007/BF00283257 - Jan H. van Vuuren,
*The existence of travelling plane waves in a general class of competition-diffusion systems*, IMA J. Appl. Math.**55**(1995), no. 2, 135–148. MR**1358463**, DOI 10.1093/imamat/55.2.135 - Guangyu Zhao and Shigui Ruan,
*Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion*, J. Math. Pures Appl. (9)**95**(2011), no. 6, 627–671 (English, with English and French summaries). MR**2802895**, DOI 10.1016/j.matpur.2010.11.005

## Additional Information

**Fang Li**- Affiliation: Mathematics & Science College, Shanghai Normal University, Shanghai 200234, People’s Republic of China.
- MR Author ID: 1206479
- Email: lifwx@shnu.edu.cn
**Bendong Lou**- Affiliation: Mathematics & Science College, Shanghai Normal University, Shanghai 200234, People’s Republic of China.
- Email: lou@shnu.edu.cn
- Received by editor(s): May 8, 2017
- Received by editor(s) in revised form: August 2, 2017
- Published electronically: January 16, 2018
- Additional Notes: Bendong Lou served as corresponding author.

This research was partly supported by NSFC (No. 11671262) and China Postdoctoral Science Foundation funded project. - Communicated by: Wenxian Shen
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**146**(2018), 2163-2171 - MSC (2010): Primary 35K57, 35C07, 35B15
- DOI: https://doi.org/10.1090/proc/13923
- MathSciNet review: 3767366