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Lp + L∞ AND Lp ∩ L∞ ARE NOT ISOMORPHIC

FOR ALL 1 ≤ p < ∞, p �= 2

SERGEY V. ASTASHKIN AND LECH MALIGRANDA

(Communicated by Thomas Schlumprecht)

Abstract. We prove the result stated in the title. It comes as a consequence
of the fact that the space Lp ∩ L∞, 1 ≤ p < ∞, p �= 2, does not contain a
complemented subspace isomorphic to Lp. In particular, as a subproduct, we
show that Lp ∩L∞ contains a complemented subspace isomorphic to �2 if and
only if p = 2.

1. Preliminaries and main result

Isomorphic classification of symmetric spaces is an important problem related
to the study of symmetric structures in arbitrary Banach spaces. This research
was initiated in the seminal work of Johnson, Maurey, Schechtman and Tzafriri [9].
Somewhat later it was extended by Kalton to lattice structures [10].

In particular, in [9] (see also [12, Section 2.f]) it was shown that the space L2∩Lp

for 2 ≤ p < ∞ (resp. L2 + Lp for 1 < p ≤ 2) is isomorphic to Lp. A detailed
investigation of various properties of separable sums and intersections of Lp-spaces
(i.e., with p < ∞) was undertaken by Dilworth in the papers [5] and [6]. In
contrast to that, we focus here on the problem if the nonseparable spaces Lp +L∞
and Lp ∩ L∞, 1 ≤ p < ∞, are isomorphic or not.

In this paper we use the standard notation from the theory of symmetric spaces
(cf. [3], [11] and [12]). For 1 ≤ p < ∞ the space Lp + L∞ consists of all sums of
p-integrable and bounded measurable functions on (0,∞) with the norm defined by

‖x‖Lp+L∞ := inf
x(t)=u(t)+v(t),u∈Lp,v∈L∞

(
‖u‖Lp

+ ‖v‖L∞

)
.

The Lp∩L∞ consists of all bounded p-integrable functions on (0,∞) with the norm

‖x‖Lp∩L∞ := max
{
‖x‖Lp

, ‖x‖L∞

}
= max

{(∫ ∞

0

|x(t)|p dt
)1/p

, ess sup
t>0

|x(t)|
}
.

Both Lp +L∞ and Lp ∩L∞ for all 1 ≤ p < ∞ are nonseparable Banach spaces (cf.
[11, p. 79] for p = 1). The norm in Lp+L∞ satisfies the following sharp estimates:

(1)
(∫ 1

0

x∗(t)p dt
)1/p

≤ ‖x‖Lp+L∞ ≤ 21−1/p
(∫ 1

0

x∗(t)p dt
)1/p

Received by the editors June 23, 2017, and, in revised form, August 10, 2017.
2010 Mathematics Subject Classification. Primary 46E30, 46B20, 46B42.
Key words and phrases. Symmetric spaces, isomorphic spaces, complemented subspaces.
The research of the first author was partially supported by the Ministry of Education and

Science of the Russian Federation, project 1.470.2016/1.4, and by the RFBR grant 17-01-00138.

c©2018 American Mathematical Society

2181

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13928


2182 SERGEY V. ASTASHKIN AND LECH MALIGRANDA

(cf. [4, p. 109], [13, p. 176] and with details in [14, Theorem 1]). Moreover, in the
case when p = 1 we have

‖x‖L1+L∞ =

∫ 1

0

x∗(t) dt

(see [3, pp. 74–75] and [11, p. 78]. Here, x∗(t) denotes the decreasing rearrangement
of |x(u)|, that is,

x∗(t) = inf{τ > 0: m({u > 0: |x(u)| > τ}) < t}
(if E ⊂ R is a measurable set, then m(E) is its Lebesgue measure). Note that every
measurable function and its decreasing rearrangement are equimeasurable, which
means that

m({u > 0: |x(u)| > τ}) = m({t > 0: x∗(t) > τ})
for all τ > 0.

Denote by L0
∞ and (Lp + L∞)0, 1 ≤ p < ∞, the closure of L1 ∩ L∞ in L∞ and

in Lp + L∞, respectively. Clearly, (Lp + L∞)0 = Lp + L0
∞. Note that

(2) Lp + L0
∞ = {x ∈ Lp + L∞ : x∗(t) → 0 as t → ∞}

and

(L1 + L0
∞)∗ = L1 ∩ L∞,

i.e., L1 ∩L∞ is a dual space (cf. [11, pp. 79-80] and [3, pp. 76-77]). Also, Lp ∩L∞
and Lp + L∞, 1 < p < ∞, are dual spaces because

(Lq + L1)
∗ = Lp ∩ L∞ and (Lq ∩ L1)

∗ = Lp + L∞,

where 1/p+ 1/q = 1.
Now, we state the main result of this paper.

Theorem 1. For every 1 ≤ p < ∞, p �= 2, the spaces Lp + L∞ and Lp ∩ L∞ are
not isomorphic.

Clearly, the space Lp +L∞ contains the complemented subspace (Lp +L∞)∣∣[0,1]
isomorphic to Lp[0, 1] for every 1 ≤ p < ∞. As a bounded projection we can take
the operator Px := xχ[0,1] because from (1) it follows

‖Px‖Lp
= ‖xχ[0,1]‖Lp

=
(∫ 1

0

|x(t)|p dt
)1/p

≤
(∫ 1

0

x∗(t)p dt
)1/p

≤ ‖x‖Lp+L∞ .

In the next two sections we show that Lp ∩ L∞ for p ∈ [1, 2) ∪ (2,∞) does not
contain a complemented subspace isomorphic to Lp[0, 1], which gives our claim. At
the same time, Lp ∩ L∞, 1 ≤ p < ∞, contains a subspace isomorphic to L∞ and
hence a subspace isomorphic to Lp[0, 1].

The spaces Lp + L∞ and L∞ are not isomorphic since Lp + L∞ contains a
complemented subspace isomorphic to Lp and L∞ is a prime space (this follows
from the Lindenstrauss and Pe�lczyński results – see [1, Theorems 5.6.5 and 4.3.10]).
Similarly, the spaces Lp∩L∞ and L∞ are not isomorphic because Lp∩L∞ contains
a complemented subspace isomorphic to �p (take, for instance, the span of the
sequence {χ[n−1,n)}∞n=1 in Lp ∩ L∞).

If {xn}∞n=1 is a sequence from a Banach space X, by [xn] we denote its closed
linear span in X. As usual, the Rademacher functions on [0, 1] are defined as
follows: rk(t) = sign(sin 2kπt), k ∈ N, t ∈ [0, 1].
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2. L1∩L∞ does not contain a complemented subspace isomorphic to L1

Our proof of Theorem 1 in the case p = 1 will be based on an application of
the Hagler-Stegall theorem proved in [8] (see Theorem 1). To state it we need the
following definition.

The space (
⊕∞

n=1 �
n
∞)�p , 1 ≤ p < ∞, is the Banach space of all sequences

{cnk}∞n=1, (c
n
k )

n
k=1 ∈ �n∞, n = 1, 2, . . . , such that

‖{cnk}‖ :=
( ∞∑

n=1

‖(cnk )nk=1‖
p
�∞

)1/p

=
( ∞∑

n=1

max
1≤k≤n

|cnk |p
)1/p

< ∞.

Theorem 2 (Hagler-Stegall). Let X be a Banach space. Then its dual X∗ contains
a complemented subspace isomorphic to L1 if and only if X contains a subspace
isomorphic to (

⊕∞
n=1 �

n
∞)�1 .

Note that (L1+L0
∞)∣∣[0,1] = L1[0, 1], and hence L1+L0

∞ contains a complemented

copy of L1[0, 1], and so of �1. Moreover, its subspace

(3)

{ ∞∑
k=1

ckχ[k−1,k] : ck → 0 as k → ∞
}

is isomorphic to c0 and so, by the Sobczyk theorem (cf. [1, Theorem 2.5.8]), is
complemented in the separable space L1+L0

∞. Therefore, the latter space contains
uniformly complemented copies of �n∞, n ∈ N. However, we have

Theorem 3. The space L1 +L0
∞ does not contain any subspace isomorphic to the

space (
⊕∞

n=1 �
n
∞)�1 .

Proof. On the contrary, assume that L1 + L0
∞ contains a subspace isomorphic to

(
⊕∞

n=1 �
n
∞)�1 . Let xn

k , n ∈ N, k = 1, 2, . . . , n, form the sequence from L1 + L0
∞

equivalent to the unit vector basis of (
⊕∞

n=1 �
n
∞)�1 . This means that there is a

constant C > 0 such that for all ank ∈ R

C−1
∞∑

n=1

max
k=1,2,...,n

|ank | ≤
∥∥∥ ∞∑

n=1

n∑
k=1

ankx
n
k

∥∥∥
L1+L∞

≤ C

∞∑
n=1

max
k=1,2,...,n

|ank |.

In particular, for any n ∈ N, every subset A ⊂ {1, 2, . . . , n} and all εk = ±1, k ∈ A,
we have

(4)
∥∥∥∑

k∈A

εkx
n
k

∥∥∥
L1+L∞

=

∫ 1

0

(∑
k∈A

εkx
n
k

)∗
(s) ds ≤ C,

and for all 1 ≤ k(n) ≤ n, n ∈ N the sequence {xn
k(n)}∞n=1 is equivalent in L1 + L∞

to the unit vector basis of �1, i.e., for all an ∈ R

(5) C−1
∞∑

n=1

|an| ≤
∫ 1

0

( ∞∑
n=1

anx
n
k(n)

)∗
(s) ds ≤ C

∞∑
n=1

|an|.

Moreover, we can assume that ‖xn
k‖L1+L∞ = 1 for all n ∈ N, k = 1, 2, . . . , n, i.e.,

(6)

∫ 1

0

(xn
k )

∗(s) ds = 1, n ∈ N, k = 1, 2, . . . , n.
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First, we show that for every δ > 0 there is M = M(δ) ∈ N such that for all
n ∈ N and any E ⊂ (0,∞) with m(E) ≤ 1 we have

(7) card{k = 1, 2, . . . , n :

∫
E

|xn
k (s)|ds ≥ δ} ≤ M.

Indeed, assuming the contrary, for some δ0 > 0 we can find ni ↑, Ei ⊂ (0,∞),m(Ei)
≤ 1, i = 1, 2, . . ., such that

card{k = 1, 2, . . . , ni :

∫
Ei

|xni

k (s)|ds ≥ δ0} → ∞.

Denoting Ai := {k = 1, 2, . . . , ni :
∫
Ei

|xni

k (s)|ds ≥ δ0}, for all εk = ±1 we have

(8)
∥∥∥ ∑

k∈Ai

εkx
ni

k

∥∥∥
L1+L∞

=

∫ 1

0

( ∑
k∈Ai

εkx
ni

k

)∗
(s) ds ≥

∫
Ei

∣∣∣ ∑
k∈Ai

εkx
ni

k (s)
∣∣∣ ds.

Moreover, by the Fubini theorem, Khintchine’s inequality in L1 (cf. [18]) and the
Minkowski inequality, we obtain∫ 1

0

∫
Ei

∣∣∣ ∑
k∈Ai

rk(t)x
ni

k (s)
∣∣∣ ds dt = ∫

Ei

∫ 1

0

∣∣∣ ∑
k∈Ai

rk(t)x
ni

k (s)
∣∣∣ dt ds

≥ 1√
2

∫
Ei

( ∑
k∈Ai

|xni

k (s)|2
)1/2

ds

≥ 1√
2

(∑
k∈Ai

(∫
Ei

|xni

k (s)| ds
)2

)1/2

≥ δ0√
2

√
cardAi.

Therefore, for each i ∈ N there are signs εk(i), k ∈ Ai such that∫
Ei

∣∣∣ ∑
k∈Ai

εk(i)x
ni

k (s)
∣∣∣ ds ≥ δ0√

2

√
cardAi.

Combining this with (8) we obtain that∥∥∥ ∑
k∈Ai

εk(i)x
ni

k

∥∥∥
L1+L∞

≥ δ0√
2

√
cardAi, i = 1, 2, . . . .

Since cardAi → ∞ as i → ∞, the latter inequality contradicts (4). Thus, (7) is
proved.

Now, we claim that for all δ > 0 and n ∈ N

card
{
k = 1, 2, . . . , n : there is F ⊂ [0,∞) such that m(F ) ≤ 1

M+1

and
∫
F
|xn

k (s)| ds ≥ δ
}
≤ M,(9)

where M depending on δ is taken from (7).
Indeed, otherwise, we can find δ′ > 0, n0 ∈ N and I ⊂ {1, 2, . . . , n0}, cardI =

M0 + 1,M0 = M(δ0), such that for every k ∈ I there is Fk ⊂ (0,∞) with

m(Fk) ≤
1

M0 + 1
and

∫
Fk

|xn0

k (s)| ds ≥ δ′.
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Setting E =
⋃

k∈I Fk, we see that m(E) ≤
∑

k∈I m(Fk) ≤ 1. Moreover, by the
definition of I and E,

card{k = 1, 2, . . . , n0 :

∫
E

|xn0

k (s)| ds ≥ δ′} ≥ cardI > M0,

which is impossible because of (7).
Now, we construct a special sequence of pairwise disjoint functions, which is

equivalent in L1 + L0
∞ to the unit vector basis in �1. By (7), for arbitrary δ1 > 0

there is M1 = M1(δ1) ∈ N such that for all n ∈ N

card{k = 1, 2, . . . , n :

∫ 1

0

|xn1

k1
(s)| ds ≥ δ1} ≤ M1.

Therefore, taking n1 > 2M1, we can find k1 = 1, 2, . . . , n1 satisfying∫ 1

0

|xn1

k1
(s)| ds < δ1

and, by (9), such that from F ⊂ (0,∞) with m(F ) ≤ 1
M1+1 it follows that∫

F

|xn1

k1
(s)| ds < δ1.

Moreover, recalling (2) we have (xn1

k1
)∗(t) → 0 as t → ∞. Therefore, since

xn1

k1
∈ L1 + L∞ and any measurable function is equimeasurable with its decreasing

rearrangement, there exists m1 ∈ N such that ‖xn1

k1
χ[m1,∞)‖L1+L∞ ≤ δ1. Then,

setting y1 := xn1

k1
χ[1,m1], we have

‖xn1

k1
− y1‖L1+L∞ ≤ 2δ1.

Next, by (7), for arbitrary δ2 > 0 there is M2 = M2(δ2) ∈ N such that for all n ∈ N

and j = 1, 2, . . . ,m1

card{k = 1, 2, . . . , n :

∫ j

j−1

|xn
k (s)| ds ≥ δ2} ≤ M2.

Let n2 ∈ N be such that n2 > M2m1+M2+M1. Then, by the preceding inequality
and (9), there is 1 ≤ k2 ≤ n2 such that for all j = 1, 2, . . . ,m1 we have∫ j

j−1

|xn2

k2
(s)| ds ≤ δ2,(10)

and from F ⊂ (0,∞) with m(F ) ≤ 1
Mi+1 , i = 1, 2, it follows that∫

F

|xn2

k2
(s)| ds ≤ δi.

Note that (10) implies
∫m1

0
|xn2

k2
(s)| ds ≤ m1δ2, whence

‖xn2

k2
χ[0,m1]‖L1+L∞ ≤ m1δ2.

As above, by (2), there is m2 > m1 such that ‖xn2

k2
χ[m2,∞)‖L1+L∞ ≤ m1δ2.

Thus, putting y2 := xn2

k2
χ[m1,m2], we have

‖xn2

k2
− y2‖L1+L∞ ≤ 2m1δ2.
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Continuing this process, for any δ3 > 0, by (7), we can find M3 ∈ N such that for
all n ∈ N and j = 1, 2, . . . ,m2 it holds

card{k = 1, 2, . . . , n :

∫ j

j−1

|xn
k (s)| ds ≥ δ3} ≤ M3.

So, again, applying (9) and taking n3 > m2M3+M1+M2+M3 we find 1 ≤ k3 ≤ n3

such that ∫ j

j−1

|xn3

k3
(s)| ds ≤ δ3, j = 1, 2, . . . ,m2,

and ∫
F

|xn3

k3
(s)| ds ≤ δi,

whenever m(F ) ≤ 1
Mi+1 , i = 1, 2, 3. This implies that

∫m2

0
|xn3

k3
(s)| ds ≤ m2δ3, and

so
‖xn3

k3
χ[0,m2]‖L1+L∞ ≤ m2δ3.

Choosingm3>m2 so that ‖x‘n3

k3
χ[m3,∞)‖L1+L∞ ≤m2δ3 and setting y3 :=xn3

k3
χ[m2,m3],

we obtain
‖xn3

k3
− y3‖L1+L∞ ≤ 2m2δ3.

As a result, we get the increasing sequences ni,mi, ki of natural numbers, 1 ≤ ki ≤
ni, i = 1, 2, . . . and the sequence {yi} of pairwise disjoint functions from L1 + L0

∞
such that

‖xni

ki
− yi‖L1+L∞ ≤ 2mi−1δi,

where m0 := 1. Noting that the sequence of positive reals {δi}∞i=1 can be chosen in
such a way that the numbers mi−1δi would be arbitrarily small, we can assume, by
the principle of small perturbations (cf. [1, Theorem 1.3.10]) and by inequalities
(5), that {yi} is equivalent in L1 +L∞ to the unit vector basis of �1. Moreover, by
construction, for all j = 1, 2, . . . and i = 1, 2, 3, . . . , j we have

(11)

∫
F

|yj(s)| ds ≤ δi whenever m(F ) ≤ 1

Mi + 1
.

Let 1 ≤ l < m be arbitrary. Since yi, i = 1, 2, . . . are disjoint functions, then

(12)
∥∥∥ m∑

i=l

yi

∥∥∥
L1+L∞

=

∫ 1

0

( m∑
i=l

yi

)∗
(s) ds =

m∑
i=l

∫
Ei

|yi(s)| ds,

where Ei are disjoint sets from (0,∞) such that
∑m

i=l m(Ei) ≤ 1. Clearly, for a
fixed l we have

k0(m) := card{i ∈ N : l ≤ i ≤ m and m(Ei) >
1

Ml + 1
} ≤ Ml + 1.

Hence, by (11), (12) and (6),∥∥∥ m∑
i=l

yi

∥∥∥
L1+L∞

≤ k0(m) + (m− l − k0(m))δl.

So, assuming that m ≥ (Ml + 1)/δl + l, we obtain∥∥∥ m∑
i=l

yi

∥∥∥
L1+L∞

≤ 2δl(m− l).

Since δl → 0 as l → ∞, the latter inequality contradicts the fact that {yi} is
equivalent in L1 + L∞ to the unit vector basis of �1. The proof is complete. �
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Remark 1. Since Lp is of cotype max(p, 2) for every 1 ≤ p < ∞ the result of
Theorem 3 can be generalized as follows: The space Lp +L0

∞ does not contain any
subspace isomorphic to the space (

⊕∞
n=1 �

n
∞)�p for any 1 ≤ p < ∞.

Proof of Theorem 1 for p = 1. By the Hagler-Stegall Theorem 2 (see also [17]),
Theorem 3 and the fact that L1 ∩ L∞ = (L1 + L0

∞)∗, we obtain that (in con-
trast to L1 + L∞) the space L1 ∩ L∞ does not contain a complemented subspace
isomorphic to L1[0, 1], which gives our claim. �

Since L1∩L∞ is a dual space (see Section 1), in the case when p = 1 Theorem 1
is also an immediate consequence of the following result, which was communicated
to us by W. B. Johnson and which is included here with his kind permission.

Theorem 4. The space L1 + L∞ is not isomorphic to a dual space.

Proof. To the contrary, let L1 + L∞ be isomorphic to a dual space. Then, by
[8, Theorem 1], together with a complemented copy of L1 it contains also a com-
plemented subspace isomorphic to C[0, 1]∗. Hence, in view of the classical Riesz
representation theorem L1 + L∞ contains a complemented subspace F isomorphic
to �1(A), where A is uncountable.

Let {fα}α∈A ⊂ F be a system equivalent to the unit vector basis in �1(A). Then
fα = gα + hα with gα ∈ L1, hα ∈ L∞, α ∈ A. Since L1 is a separable space and
A is uncountable, there are sequences {αn}∞n=1 ⊂ A and {βn}∞n=1 ⊂ A such that
αk �= βm for all k,m ∈ N and

(13) ‖gαn
− gβn

‖L1
→ 0 as n → ∞.

It is easy to see that the sequence {gαn
+hαn

−gβn
−hβn

}∞n=1 is equivalent in L1+L∞
to the unit vector basis in �1 and is complemented in F , and so in L1 + L∞. Let
us note that

‖(gαn
+ hαn

− gβn
− hβn

)− (hαn
− hβn

)‖L1+L∞ ≤ ‖gαn
− gβn

‖L1
, n ∈ N.

Therefore, by (13) and the principle of small perturbations, passing to a subse-
quence, we obtain that the sequence {hαn

−hβn
}∞n=1 ⊂ L∞ is equivalent in L1+L∞

to the unit vector basis in �1 and also spans in L1 +L∞ a complemented subspace.
It is easy to see that this sequence has the same properties also in the space L∞.

This is a contradiction. �

3. Lp ∩ L∞ for p �= 2 does not contain a complemented subspace

isomorphic to �2

The well-known Raynaud’s result (cf. [15, Theorem 4]) presents the conditions
under which a separable symmetric space (on [0, 1] or on (0,∞)) contains a com-
plemented subspace isomorphic to �2. The following theorem can be regarded as
its extension to a special class of nonseparable spaces.

Theorem 5. Let 1 ≤ p < ∞. The following conditions are equivalent:
(i) Lp ∩ L∞ contains a complemented subspace lattice-isomorphic to �2;
(ii) Lp ∩ L∞ contains a complemented subspace isomorphic to �2;
(iii) p = 2.

Proof. Implication (i) ⇒ (ii) is obvious. Moreover, if p = 2, then clearly the
sequence {χ[n−1,n)}∞n=1 is equivalent in L2 ∩ L∞ to the unit vector basis of �2 and
spans a complemented subspace. So, (iii) implies (i).
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Let us prove that from (ii) it follows (iii). On the contrary, let {xn} ⊂ Lp ∩L∞
be a sequence equivalent in Lp ∩ L∞ to the unit vector basis of �2 so that [xn] is a
complemented subspace of Lp ∩ L∞.

First, let us show that there is not a > 0 such that for all ck ∈ R, k = 1, 2, . . .∥∥∥ ∞∑
k=1

ckxkχ[0,a]

∥∥∥
L1

�
∥∥∥ ∞∑

k=1

ckxk

∥∥∥
Lp∩L∞

.

Indeed, the latter equivalence implies∥∥∥ ∞∑
k=1

ckxkχ[0,a]

∥∥∥
L1

�
∥∥∥ ∞∑

k=1

ckxk

∥∥∥
Lp∩L∞[0,a]

� ‖(ck)‖�2 .

Since Lp ∩ L∞[0, a] = L∞[0, a], we see that the sequence {xnχ[0,a]} spans in both
spaces L1[0, a] and L∞[0, a] the same infinite-dimensional space. However, by the
well-known Grothendieck’s theorem (cf. [7, Theorem 1]; see also [16, p. 117]) it is
impossible. As a result, we can find a sequence {fn} ⊂ [xk], ‖fn‖Lp∩L∞ = 1, n =
1, 2, . . ., such that for every a > 0∫ a

0

|fn(t)| dt → 0 as n → ∞.

Hence, fn
m→ 0 (convergence in Lebesgue measure m) on any interval [0, a]. Since

[xk] spans �2, then passing to a subsequence if it is necessary (and keeping the same
notation), we can assume that fn → 0 weakly in Lp∩L∞. Therefore, combining the
Bessaga-Pe�lczyński Selection Principle (cf. [1, Theorem 1.3.10]) and the principle of
small perturbations (cf. [1, Theorem 1.3.10]), we can select a further subsequence,
which is equivalent to the sequence {xk} in Lp ∩ L∞ (and so to the unit vector
basis in �2) and which spans a complemented subspace in Lp ∩ L∞. Let it be
denoted still by {fn}∞n=1. Now, we will select a special subsequence from {fn},
which is equivalent to a sequence of functions whose supports intersect only over
some subset of (0,∞) with Lebesgue measure at most 1.

Let {εn}∞n=1 be an arbitrary (by now) decreasing sequence of positive reals,

ε1 < 1. Since fn
m→ 0 on [0, 1], there is n1 ∈ N such that

(14) m({t ∈ [0, 1] : |fn1
(t)| > ε1}) < ε1.

Moreover, the fact that ‖fn1
χ(m,∞)‖Lp

→ 0 as m → ∞ allows us to find m1 ∈ N,
for which

(15) ‖fn1
χ[m1,∞)‖Lp

≤ ε22.

Clearly, from (15) it follows that

(16) m({t ∈ [m1,∞) : |fn1
(t)| > ε2}) ≤ ε2.

Denoting

A1 := {t ∈ [0, 1] : |fn1
(t)| > ε1}, B0

1 := {t ∈ [m1,∞) : |fn1
(t)| > ε2}

and

g1 := fn1

(
χA1

+ χB0
1
+ χ[1,m1]

)
,

from (14), (15) and (16) we have

‖fn1
− g1‖Lp∩L∞ ≤ ε1 +max(ε2, ε

2
2) ≤ 2 ε1.
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Further, since fn
m→ 0 on [0,m1], there exists n2 > n1, n2 ∈ N such that

(17) m({t ∈ [0,m1] : |fn2
(t)| > ε2

m1
}) < ε2.

Again, using the fact that ‖fn2
χ(m,∞)‖Lp

→ 0 as m → ∞, we can choose m2 > m1

in such a way that

(18) ‖fn2
χ[m2,∞)‖Lp

≤ ε23

and also

(19) m(B1
1) < ε3, where B1

1 := B0
1 ∩ [m2,∞).

From (18), obviously, it follows that

(20) m({t ∈ [m2,∞) : |fn2
(t)| > ε3}) ≤ ε3.

Setting

A2 := {t ∈ [0,m1] : |fn2
(t)| > ε2m

−1/p
1 }, B0

2 := {t ∈ [m2,∞) : |fn2
(t)| > ε3}

and

g2 := fn2

(
χA2

+ χB0
2
+ χ[m1,m2]

)
,

by (17), (18) and (20), we get

‖fn2
− g2‖Lp∩L∞ ≤ max(ε2m

−1/p
1 , ε2) + max(ε3, ε

2
3) < 2 ε2.

Let’s do one more step. Since fn
m→ 0 on [0,m2], there exists n3 > n2, n3 ∈ N such

that

(21) m({t ∈ [0,m2] : |fn3
(t)| > ε3m

−1/p
2 }) < ε3.

As above, we can choose m3 > m2 with the properties

(22) ‖fn3
χ[m3,∞)‖Lp

≤ ε24,

(23) m(B2
1) < ε4, where B2

1 := B0
1 ∩ [m3,∞),

and

(24) m(B1
2) < ε4, where B1

2 := B0
2 ∩ [m3,∞).

From (22) we infer that

(25) m({t ∈ [m3,∞) : |fn3
(t)| > ε4}) ≤ ε4.

Finally, putting

A3 := {t ∈ [0,m2] : |fn3
(t)| > ε3m

−1/p
2 }, B0

3 := {t ∈ [m3,∞) : |fn3
(t)| > ε4}

and

g3 := fn3

(
χA3

+ χB0
3
+ χ[m2,m3]

)
,

by (21), (22) and (25), we have

‖fn3
− g3‖Lp∩L∞ ≤ max(ε3m

−1/p
2 , ε3) + max(ε4, ε

2
4) < 2 ε3.

Continuing in the same way, we get the increasing sequences of natural numbers
{nk}, {mk}, the sequences of sets {Ak}∞k=1, {Bi

k}∞i=0, k = 1, 2, . . . and the sequence
of functions

gk := fnk

(
χAk

+ χB0
k
+ χ[mk−1,mk]

)
,
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(where m0 = 1), satisfying the properties

(26) m(Ak) ≤ εk, k = 1, 2, . . . ,

(27) m(Bi
k) ≤ εk+i+1, k = 1, 2, . . . , i = 0, 1, 2, . . . ,

(see (19), (23) and (24)) and

‖fnk
− gk‖Lp∩L∞ ≤ 2 εk, k = 1, 2, . . . .

In particular, by the last inequality, choosing sufficiently small εk, k = 1, 2, . . . ,
and applying once more the principle of small perturbations [1, Theorem 1.3.10],
we may assume that the sequence {gk} is equivalent to {fnk

} (and so to the unit
vector basis of �2) and the subspace [gk] is complemented in Lp ∩ L∞. Thus, for
some C > 0 and all (ck) ∈ �2,

(28) C−1‖(ck)‖�2 ≤
∥∥∥ ∞∑

k=1

ckgk

∥∥∥
Lp∩L∞

≤ C‖(ck)‖�2 .

Now, denote

C1 :=

∞⋃
i=1

Ai ∪B0
1 , C2 :=

∞⋃
i=2

Ai ∪B0
1 ∪B0

2 , C3 :=

∞⋃
i=3

Ai ∪B1
1 ∪B0

2 ∪B0
3 , . . .

. . . , Cj :=

∞⋃
i=j

Ai ∪Bj−2
1 ∪Bj−3

2 ∪ . . . ∪B1
j−2 ∪B0

j−1 ∪B0
j , . . . .

Setting C :=
⋃∞

j=1 Cj and applying (26) and (27), we have

(29) m(C) ≤
∞∑
j=1

m(Cj) ≤
∞∑
j=1

( ∞∑
i=j

εi + jεj

)
≤ 1

whenever εk, k = 1, 2, . . . , are sufficiently small. Putting

D1 = [1,m1] \
( ∞⋃

i=2

Ai

)
, D2 = [m1,m2] \

( ∞⋃
i=3

Ai ∪B0
1

)
,

D3 = [m2,m3] \
( ∞⋃

i=4

Ai ∪B1
1 ∪B0

2

)
, . . . ,

Dj = [mj−1,mj ] \

⎛
⎝ ∞⋃

i=j+1

Ai ∪Bj−2
1 ∪Bj−3

2 ∪ . . . ∪B1
j−2 ∪B0

j−1

⎞
⎠ , . . . ,

and recalling the definition of gk, k = 1, 2, . . ., we infer that

gk = uk + vk, where uk := gkχCk
and vk := gkχDk

, k = 1, 2, . . . .

Note that (
⋃∞

k=1Ck) ∩ (
⋃∞

k=1 Dk) = ∅, whence (28) can be rewritten as follows:

(30)
1

2
C−1‖(ck)‖�2 ≤ max

(∥∥∥ ∞∑
k=1

ckuk

∥∥∥
Lp∩L∞

,
∥∥∥ ∞∑

k=1

ckvk

∥∥∥
Lp∩L∞

)
≤ C‖(ck)‖�2 .

Moreover, the subspace [uk] is also complemented in Lp∩L∞ and, by (29), we have

(31) m
( ∞⋃

k=1

supp uk

)
≤ 1.



Lp + L∞ AND Lp ∩ L∞ ARE NOT ISOMORPHIC FOR ALL 1 ≤ p < ∞, p �= 2 2191

Now, suppose that lim infk→∞ ‖uk‖Lp∩L∞ = 0. Then passing to a subsequence
(and keeping the same notation), by (30), we obtain

(32)
1

2C
‖(ck)‖�2 ≤

∥∥∥ ∞∑
k=1

ckvk

∥∥∥
Lp∩L∞

≤ C‖(ck)‖�2 .

Since vk, k = 1, 2, . . ., are pairwise disjoint, we have

∥∥∥ ∞∑
k=1

ckvk

∥∥∥
Lp∩L∞

= max

(∥∥∥ ∞∑
k=1

ckvk

∥∥∥
Lp

,
∥∥∥ ∞∑

k=1

ckvk

∥∥∥
L∞

)

� max

(( ∞∑
k=1

|ck|p‖vk‖pLp

)1/p

, sup
k∈N

|ck|‖vk‖L∞

)
.(33)

First, let us assume that 1 ≤ p < 2. If lim supk→∞ ‖vk‖Lp
> 0, then selecting a

further subsequence (and again keeping notation), we obtain the inequality

∥∥∥ ∞∑
k=1

ckvk

∥∥∥
Lp∩L∞

≥ c
( ∞∑

k=1

|ck|p
)1/p

,

which contradicts the right-hand estimate in (32). So, limk→∞ ‖vk‖Lp
= 0, and

then from (33) for some subsequence of {vk} (we still keep notation) we have

(34)
∥∥∥ ∞∑

k=1

ckvk

∥∥∥
Lp∩L∞

≤ C1 sup
k∈N

|ck|,

and now the left-hand side of (32) fails. Thus, if 1 ≤ p < 2, inequality (32) does
not hold.

Let p > 2. Clearly, from (33) it follows that

(35)
∥∥∥ ∞∑

k=1

ckvk

∥∥∥
Lp∩L∞

≤ C2

( ∞∑
k=1

|ck|p
)1/p

,

and so the left-hand side estimate in (32) cannot be true. Thus, (32) fails for every
p ∈ [1, 2) ∪ (2,∞), and as a result we get

lim inf
k→∞

‖uk‖Lp∩L∞ > 0.

Now, if 1 ≤ p < 2, then, as above, limk→∞ ‖vk‖Lp
= 0, and we come (for some

subsequence of {vk}) to inequality (34). Clearly,

(36)
∥∥∥ ∞∑

k=1

ckuk

∥∥∥
Lp∩L∞

≥ c sup
k∈N

|ck|,

and from (34) and (30) it follows that for some C > 0 and all (ck) ∈ �2 we have

(37) C−1 ‖(ck)‖�2 ≤
∥∥∥ ∞∑

k=1

ckuk

∥∥∥
Lp∩L∞

≤ C‖(ck)‖�2 .

Therefore, the subspace [uk] is isomorphic in Lp ∩ L∞ to �2.
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We show that the last claim holds also in the case p > 2. On the contrary, assume
that the left-hand side of (37) fails (note that the opposite side of (37) follows from
(30)). In other words, assume that there is a sequence (cnk)

∞
k=1 ∈ �2, n = 1, 2, . . .,

such that ‖(cnk )‖�2 = 1 for all n ∈ N and

∥∥∥ ∞∑
k=1

cnkuk

∥∥∥
Lp∩L∞

→ 0 as n → ∞.

Then, by (36), we have supk∈N |cnk | → 0 as n → ∞. Therefore, since

∞∑
k=1

|cnk |p ≤
(
sup
k∈N

|cnk |
)p−2

∞∑
k=1

|cnk |2 =
(
sup
k∈N

|cnk |
)p−2

,

we have
∑∞

k=1 |cnk |p → 0 as n → ∞. Combining this together with (35), we obtain

∥∥∥ ∞∑
k=1

cnkvk

∥∥∥
Lp∩L∞

→ 0 as n → ∞,

and so the left-hand estimate in (30) does not hold. This contradiction shows
that (37) is valid for every p ∈ [1, 2) ∪ (2,∞). Thus, the subspace [uk] is comple-
mented in Lp ∩ L∞ and isomorphic to �2. As an immediate consequence of that,
we infer that [uk] is a complemented subspace of the space Lp ∩ L∞(E), where
E =

⋃∞
k=1 supp uk =

⋃∞
k=1 Ck. Since by (31) m(E) ≤ 1, it follows that Lp∩L∞(E)

is isometric to L∞(E). As a result we come to a contradiction, because L∞ does
not contain any complemented reflexive subspace (cf. [1, Theorem 5.6.5]). �

Proof of Theorem 1 for p ∈ (1, 2) ∪ (2,∞). Clearly, if 1 < p < ∞, then Lp (and
hence Lp + L∞) contains a complemented copy of �2 (for instance, the span of
the Rademacher sequence). Therefore, by applying Theorem 5, we complete the
proof. �

Note that if X is a symmetric space on (0,∞), then X +L∞ contains a comple-
mented space isomorphic to X[0, 1] = {x ∈ X : supp x ⊂ [0, 1]} since

‖xχ[0,1]‖X ≤ CX ‖x‖X+L∞ for x ∈ X + L∞,

where CX ≤ max(2 ‖χ[0,1]‖X , 1). In fact, for x ∈ X + L∞, using estimate (4.2)
from [11, p. 91], we obtain

‖x‖X+L∞ ≥ ‖xχ[0,1]‖X+L∞ ≥ inf
A⊂[0,1]

(‖xχA‖X + ‖xχ[0,1]\A‖L∞)

≥ inf
A⊂[0,1]

(‖xχA‖X +
1

2 ‖χ[0,1]‖X
‖xχ[0,1]\A‖X) ≥ 1

CX
‖xχ[0,1]‖X .

So, an inspection of the proofs of Theorems 5 and 1 (in the case when p ∈ (1, 2) ∪
(2,∞)) shows that the following more general result is true.

Theorem 6. Suppose X is a separable symmetric space on (0,∞) satisfying either
the upper p-estimate for p > 2 or lower q-estimate for q < 2. Then the space
X ∩ L∞ does not contain any complemented subspace isomorphic to �2.

If, in addition, the space X[0, 1] contains a complemented subspace isomorphic
to �2, then the spaces X ∩ L∞ and X + L∞ are not isomorphic.
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4. Concluding remarks related to the spaces L2 + L∞ and L2 ∩ L∞

We do not know whether the spaces L2 + L∞ and L2 ∩ L∞ are isomorphic or
not.

Problem 1. Are the spaces L2 + L∞ and L2 ∩ L∞ isomorphic?

We end the paper with the following remarks related to the above problem.

Remark 2. The predual spaces L1 ∩ L2 and L1 + L2 for L2 + L∞ and L2 ∩ L∞,
respectively, are not isomorphic.

In fact, L1 ∩ L2 is a separable dual space since (L2 + L0
∞)∗ = L2 ∩ L1 (cf.

[5, Proposition 2(a)]). Therefore, the space L1[0, 1] cannot be embedded in this
space (cf. [1, p. 147]) but L1 + L2 has a complemented subspace isomorphic to
L1[0, 1], which completes our observation.

Remark 3. Either of the spaces L2 + L∞ and L2 ∩ L∞ is isomorphic to a (un-
complemented) subspace of �∞, and hence L2 +L∞ is isomorphic to a subspace of
L2 ∩ L∞ and vice versa.

To see this, for instance, for L2 + L∞, it is sufficient to take arbitrary dense
sequence of the unit ball of the space L1 ∩ L2, say, {ϕn}∞n=1, and to set

Tx :=
(∫ ∞

0

x(t)ϕn(t) dt
)∞

n=1
for all x ∈ L2 + L∞.

It is easy to see that this mapping defines an isometrical embedding of L2 + L∞
into �∞.
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