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Abstract. Assume α ≥ p > 1. Consider the following p-th Yamabe equation
on a connected finite graph G:

Δpϕ+ hϕp−1 = λfϕα−1,

where Δp is the discrete p-Laplacian, h and f > 0 are known real functions
defined on all vertices. We show that the above equation always has a positive
solution ϕ for some constant λ ∈ R.

1. Introduction

The well-known smooth Yamabe problem asks one to consider of the smooth
Yamabe equation [1, 5, 6]

Δϕ+ h(x)ϕ = λf(x)ϕN−1

on a C∞ compact Riemannian manifoldM of dimension n ≥ 3, where h(x) and f(x)
are C∞ functions on M , with f(x) everywhere strictly positive and N = 2n/(n−2).
The problem is to prove the existence of a real number λ and of a C∞ function ϕ,
everywhere strictly positive, satisfying the above Yamabe equation. In this short
paper, we consider the corresponding discrete Yamabe equation

Δϕ+ hϕ = λfϕα−1, α ≥ 2,

on a finite graph. More generally, we shall establish the existence results of the
following p-th discrete Yamabe equation

Δpϕ+ hϕp−1 = λfϕα−1

on a finite graph G with α ≥ p > 1. This work is inspired by Grigor’yan, Lin,
and Yang’s pioneer papers [3, 4], where they studied similar equations on finite or
locally finite graphs.

2. Settings and main results

Let G = (V,E) be a finite graph, where V denotes the vertex set and E denotes
the edge set. Fix a vertex measure μ : V → (0,+∞) and an edge measure ω : E →
(0,+∞) on G. The edge measure ω is assumed to be symmetric, that is, ωij = ωji

for each edge i ∼ j.
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Denote C(V ) as the set of all real functions defined on V . Then C(V ) is a
finite-dimensional linear space with the usual function additions and scalar multi-
plications. For any p > 1, the p-th discrete graph Laplacian Δp : C(V ) → C(V )
is

Δpfi =
1

μi

∑
j∼i

ωij |fj − fi|p−2(fj − fi)

for any f ∈ C(V ) and i ∈ V . Δp is a nonlinear operator when p �= 2 (see [2] for
more properties about Δp).

Theorem 2.1. Let G = (V,E) be a finite connected graph. Given h, f ∈ C(V )
with f > 0. Assume α ≥ p > 1. Then the following p-th Yamabe equation

(2.1) Δpϕ+ hϕp−1 = λfϕα−1

on G always has a positive solution ϕ for some constant λ ∈ R.

Taking p = 2, we get the following.

Corollary 2.2. Let G = (V,E) be a finite connected graph. Given h, f ∈ C(V )
with f > 0. Assume α ≥ 2. Then the following Yamabe equation

(2.2) Δϕ+ hϕ = λfϕα−1

on G always has a positive solution ϕ for some constant λ ∈ R.

Remark 1. Grigor’yan, Lin and Yang [4] established similar results for the following
equation

(2.3) −Δu+ hu = |u|α−2u, α > 2,

on a finite graph under the assumption h > 0. They showed that the above equation
(2.3) always has a positive solution. They also studied the equation

(2.4) −Δpu+ h|u|p−2u = f(x, u), p > 1,

and established some existence results under certain assumptions about f(x, u).
However, it is remarkable that their Δp considered in equation (2.4) is different
from ours when p �= 2. It is also remarkable that our Theorem 2.1 doesn’t require
h > 0.

3. Proofs of Theorem 2.1

3.1. Sobolev embedding. For any f ∈ C(V ), define the integral of f over V with
respect to the vertex weight μ by∫

V

fdμ =
∑
i∈V

μifi.

Set Vol(G) =
∫
V
dμ. Similarly, for any function g defined on the edge set E, we

define the integral of g over E with respect to the edge weight ω by∫
E

gdω =
∑
i∼j

ωijgij .

Especially, for any f ∈ C(V ),∫
E

|∇f |pdω =
∑
i∼j

ωij |fj − fi|p,
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where |∇f | is defined on the edge set E, and |∇f |ij = |fj − fi| for each edge i ∼ j.
Next we consider the Sobolev space W 1, p on the graph G. Define

W 1, p(G) =

{
ϕ ∈ C(V ) :

∫
E

|∇ϕ|pdω +

∫
V

|ϕ|pdμ < +∞
}

and

‖ϕ‖W 1, p(G) =

(∫
E

|∇ϕ|pdω +

∫
V

|ϕ|pdμ
) 1

p

.

Since G is a finite graph, W 1, p(G) is exactly C(V ), a finite-dimensional linear space.
This implies the following Sobolev embedding.

Lemma 3.1 (Sobolev embedding). Let G = (V,E) be a finite graph. The Sobolev
space W 1, p(G) is precompact. Namely, if {ϕn} is bounded in W 1, p(G), then there
exist some ϕ ∈ W 1, p(G) such that up to a subsequence, ϕn → ϕ in W 1, p(G).

Remark 2. The convergence in W 1, p(G) is in fact pointwise convergence.

3.2. Proofs step by step. We follow the original approach pioneered by Yamabe
[6]. Denote an energy functional

(3.1) I(ϕ) =

(∫
E

|∇ϕ|pdω −
∫
V

hϕpdμ

) (∫
V

fϕαdμ

)− p
α

,

where ϕ ∈ W 1, p(G), ϕ ≥ 0, and ϕ �≡ 0. Denote

(3.2) β = inf
{
I(ϕ) : ϕ ≥ 0, ϕ �≡ 0

}
.

We shall find a solution to (2.1) step by step as follows.

Step 1. I(ϕ) is bounded below for all ϕ ≥ 0, ϕ �≡ 0. Hence β �= −∞ and β ∈ R. In
fact, it’s easy to see that

0 <

(∫
V

fϕαdμ

) p
α

≤ f
p
α

M

(∫
V

ϕαdμ

) p
α

= f
p
α

M‖ϕ‖pα,

where fM = max
i∈V

fi > 0. Hence

(3.3)

(∫
V

fϕαdμ

)− p
α

≥ f
− p

α

M ‖ϕ‖−p
α > 0.

Similarly, we also have

−
∫
V

hϕpdμ ≥ (−h)m

∫
V

ϕpdμ = (−h)m‖ϕ‖pp,

where (−h)m = min
i∈V

(−hi). Then it follows that

(3.4)

∫
E

|∇ϕ|pdω −
∫
V

hϕpdμ ≥ (−h)m‖ϕ‖pp.

By the estimates (3.3) and (3.4), we get

I(ϕ) ≥ (−h)m‖ϕ‖ppf
− p

α

M ‖ϕ‖−p
α ,

and further

(3.5) I(ϕ) ≥
(
(−h)m ∧ 0

)
‖ϕ‖ppf

− p
α

M ‖ϕ‖−p
α ,
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where (−h)m ∧ 0 is the minimum of (−h)m and 0. Since α ≥ p,

(3.6) 0 < ‖ϕ‖pp ≤
(∫

V

(ϕp)
α
p dμ

) p
α

(∫
V

1
α

α−p dμ

)α−p
α

= ‖ϕ‖pαVol(G)1−
p
α ,

which leads to

(3.7) 0 < ‖ϕ‖pp‖ϕ‖−p
α ≤ Vol(G)1−

p
α .

Thus by the estimates (3.5) and (3.7), we obtain

(3.8) I(ϕ) ≥
(
(−h)m ∧ 0

)
f
− p

α

M Vol(G)1−
p
α = Cα,p,h,f,G,

where Cα,p,h,f,G ≤ 0 is a constant depending only on the information of α, p, h,
f , and G. Note that the information of G contains V , E, μ, and ω. Hence I(ϕ) is
bounded below by a universal constant.

Step 2. There exists a ϕ̂ ≥ 0 such that β = I(ϕ̂). To find such a ϕ̂, we choose
ϕn ≥ 0, satisfying ∫

V

fϕα
ndμ = 1

and

I(ϕn) → β

as n → ∞. We may well suppose I(ϕn) ≤ 1 + β for all n. Note that

1 =

∫
V

fϕα
ndμ ≥ fm

∫
V

ϕα
ndμ = fm‖ϕn‖αα,

where fm = min
i∈V

fi. Hence

(3.9) ‖ϕn‖pα ≤ f
− p

α
m .

Denote |h|M = max
i∈V

|hi|. Then by the estimates (3.6) and (3.9), we obtain

‖ϕn‖pW 1, p(G) =

∫
E

|∇ϕ|pdω +

∫
V

|ϕ|pdμ

= I(ϕn) +

∫
V

hϕp
ndμ+ ‖ϕn‖pp

≤ 1 + β + (1 + |h|M )‖ϕn‖pp
≤ 1 + β + (1 + |h|M )Vol(G)1−

p
α ‖ϕn‖pα

≤ 1 + β + (1 + |h|M )Vol(G)1−
p
α f

− p
α

m ,

which implies that {ϕn} is bounded in W 1, p(G). Therefore by the Sobolev em-
bedding Lemma 3.1, there exists some ϕ̂ ∈ C(V ) such that up to a subsequence,
ϕn → ϕ̂ in W 1, p(G). We may well denote this subsequence as ϕn. Note that
ϕn ≥ 0 and

∫
V
fϕα

ndμ = 1. Let n → +∞; we obtain ϕ̂ ≥ 0 and
∫
V
fϕ̂αdμ = 1.

This implies that ϕ̂ �≡ 0. Since the energy functional I(ϕ) is continuous, we have
β = I(ϕ̂).

Step 3. ϕ̂ > 0.
Calculating the Euler–Lagrange equation of I(ϕ), we get

(3.10)
d

dt

∣∣∣
t=0

I(ϕ+tφ) = −p

(∫
V

fϕαdμ

)− p
α

∫
V

(
Δpϕ+ hϕp−1 − λϕfϕ

α−1
)
φdμ,
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where

(3.11) λϕ = −
∫
E
|∇ϕ|pdω −

∫
V
hϕpdμ∫

V
fϕαdμ

for any ϕ ≥ 0, ϕ �≡ 0. Thus

(3.12)
∂I

∂ϕi
= −pμi(Δpϕi + hϕp−1

i − λϕfiϕ
α−1
i )

(∫
V

fϕαdμ

)− p
α

.

Note that the graph G is connected. If ϕ̂ > 0 is not satisfied, since ϕ̂ ≥ 0 and not
identically zero, then there is an edge i ∼ j such that ϕ̂i = 0 but ϕ̂j > 0. Now look
at Δpϕ̂i:

Δpϕ̂i =
1

μi

∑
k∼i

ωik|ϕ̂k − ϕ̂i|p−2(ϕ̂k − ϕ̂i) > 0.

Therefore by (3.12), we have

∂I

∂ϕi

∣∣∣
ϕ=ϕ̂

= −pμiΔpϕ̂i

(∫
V

fϕ̂αdμ

)− p
α

< 0.

Recall we had proved that ϕ̂ is the minimum value of I(ϕ). Hence there should be

∂I

∂ϕi

∣∣∣
ϕ=ϕ̂

≥ 0,

which is a contradiction. Thus ϕ̂ > 0.

Step 4. ϕ̂ satisfied equation (2.1), that is,

(3.13) Δpϕ̂+ hϕ̂p−1 = λϕ̂fϕ̂
α−1,

where λϕ̂ is defined according to (3.11). Because I(ϕ) attains its minimum value
at ϕ̂, which lies in the interior of {ϕ ∈ C(V ) : ϕ ≥ 0},

d

dt

∣∣∣
t=0

I(ϕ̂+ tφ) = 0

for all φ ∈ C(V ). This leads to (3.13).
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