Distortion of Lipschitz functions on $c_0(\Gamma )$
HTML articles powered by AMS MathViewer
- by Petr Hájek and Matěj Novotný PDF
- Proc. Amer. Math. Soc. 146 (2018), 2173-2180 Request permission
Abstract:
Let $\Gamma$ be an uncountable cardinal. We construct a real symmetric $1$-Lipschitz function on the unit sphere of $c_0(\Gamma )$ whose restriction to any nonseparable subspace is a distortion.References
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Daniel P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114–146. MR 205031, DOI 10.1090/S0002-9947-1966-0205031-7
- W. T. Gowers, Lipschitz functions on classical spaces, European J. Combin. 13 (1992), no. 3, 141–151. MR 1164759, DOI 10.1016/0195-6698(92)90020-Z
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- Antonio J. Guirao, Vicente Montesinos, and Václav Zizler, Open problems in the geometry and analysis of Banach spaces, Springer, [Cham], 2016. MR 3524558, DOI 10.1007/978-3-319-33572-8
- Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26, Springer, New York, 2008. MR 2359536
- Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550. MR 173932, DOI 10.2307/1970663
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- B. Maurey, Symmetric distortion in $l_2$, Geometric aspects of functional analysis (Israel, 1992–1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 143–147. MR 1353457
- V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk 26 (1971), no. 6(162), 73–149 (Russian). MR 0420226
- Edward Odell and Thomas Schlumprecht, The distortion problem, Acta Math. 173 (1994), no. 2, 259–281. MR 1301394, DOI 10.1007/BF02398436
- Edward Odell and Th. Schlumprecht, Distortion and asymptotic structure, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1333–1360. MR 1999198, DOI 10.1016/S1874-5849(03)80038-4
- Baltasar Rodríguez-Salinas, On the complemented subspaces of $c_0(I)$ and $l_p(I)$ for $1<p<\infty$, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 2, 399–402. MR 1310440
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36
- Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), no. 1-2, 81–95. MR 1177333, DOI 10.1007/BF02782845
Additional Information
- Petr Hájek
- Affiliation: Mathematical Institute, Czech Academy of Science, Žitná 25, 115 67 Praha 1, Czech Republic – and – Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Jugoslávských partyzánů 3 166 27 Prague, Czech Republic
- Email: hajek@math.cas.cz
- Matěj Novotný
- Affiliation: Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Jugoslávských partyzánů 3 166 27 Prague, Czech Republic
- Email: novotny@math.feld.cvut.cz
- Received by editor(s): April 29, 2017
- Received by editor(s) in revised form: June 15, 2017, and August 9, 2017
- Published electronically: January 8, 2018
- Additional Notes: This work was supported in part by GAČR 16-07378S, RVO: 67985840 and by grant SGS15/194/OHK3/3T/13 of CTU in Prague.
- Communicated by: Thomas Schlumprecht
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2173-2180
- MSC (2010): Primary 46B20, 46T20
- DOI: https://doi.org/10.1090/proc/13945
- MathSciNet review: 3767367