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RESTRICTING IRREDUCIBLE CHARACTERS

TO SYLOW p-SUBGROUPS

EUGENIO GIANNELLI AND GABRIEL NAVARRO

(Communicated by Pham Huu Tiep)

Abstract. We restrict irreducible characters of finite groups of degree di-
visible by p to their Sylow p-subgroups and study the number of linear con-
stituents.

1. Introduction

Suppose that P is a p-group. What do the characters ψ of P that are restrictions
of irreducible characters of the groups that contain P as a Sylow p-subgroup look
like? This is too vast a hypothesis to expect to draw any general conclusion, and
yet it seems that something can be said in some special cases. Of course, ψ(1)p
has to divide |P | or, if we wish to mention G and the fusion in P , we have that
ψ(x) = ψ(y) whenever x, y ∈ P are G-conjugate, to name two obvious conditions.

The relevance of the McKay conjecture has led us to study how irreducible
characters of degree not divisible by p restrict to their Sylow p-subgroups and to
count in these characters linear constituents. In some special cases, it can be proved
that these restrictions have a unique linear constituent (see [G1], [N], or [NTV]),
and this has served to prove strong forms of the McKay conjecture for particular
classes of groups.

Also in this paper we are interested in counting linear constituents of the re-
stricted characters χP , where χ ∈ Irr(G) and P ∈ Sylp(G), but in the opposite
instance where p divides χ(1). Contrary to the case where χ has degree not divisi-
ble by p, in the new situation we might have that the number of linear constituents
is zero. But not in symmetric groups, however. In the first main result of this
paper, we prove the following.

Theorem A. Suppose that n is a positive integer and let P be a Sylow p-subgroup
of the symmetric group Sn. If χ ∈ Irr(Sn) has degree divisible by p, then the
restriction χP has at least p different linear constituents.

The number of linear constituents of the characters χP in Sn tends to be very
large, but, as we shall point out, there are arbitrarily large integers n for which this
number is exactly p. To classify these cases seems an interesting problem on its
own, and we shall comment on this later. (See Remark 3.13.)
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Of course, the fact that χP has any linear constituent is a feature of the symmet-
ric groups. There are many nonsolvable (and solvable) families of examples where
χP has none. If we assume, however, that χP has at least one linear constituent,
then we have evidence that χP should at least have p different ones. In the next
theorem, we prove a strong form of this in a different class of groups.

Theorem B. Suppose that G is a p-solvable group. Let P ∈ Sylp(G), and let
χ ∈ Irr(G) of degree divisible by p. If χP contains a linear constituent λ, then there
exists a subgroup U < P of index p such that χP contains the character (λU )

P .

We can only prove our next theorem by using the Kessar–Malle ([KM]) solution
of one implication of Brauer’s Height Zero conjecture on p-blocks, and a celebrated
theorem of Knörr on vertices ([K]).

Theorem C. Suppose that G has an abelian Sylow p-subgroup P . Let χ ∈ Irr(G).
If D ≤ P is a defect group of the p-block of χ, then there exists ν ∈ Irr(P ) such
that χP contains (νD)P . In particular, if p divides χ(1), then χP contains at least
p different linear constituents.

If |G|p = p, notice that Theorem C is a consequence of a well-known theorem of
Brauer on p-defect zero vanishing on nontrivial p-elements.

We have gathered enough evidence to guess that the following might be true.

Conjecture D. Suppose that χ ∈ Irr(G) has degree divisible by p, and let P ∈
Sylp(G). If χP has a linear constituent, then χP has at least p different linear
constituents.

Theorems C suggests that perhaps Theorem B might be true without any p-
solvability hypothesis, showing a strong form of Conjecture D. If there is an argu-
ment to prove this or a counterexample, we are not aware of it at the time of this
writing.

This paper originated while the first author was visiting the University of Va-
lencia. We are indebted to Martin Isaacs, Radha Kessar, Gunter Malle, and Ge-
off Robinson for useful conversations on this subject, and to Thomas Breuer who
helped us to check in GAP some sporadics groups. Finally we thank the anonymous
reviewer for some very helpful comments on a previous version of the article.

2. Abelian Sylow p-subgroups

We start by proving Theorem C. Although its statement is elementary, our proof
uses deep machinery. Our notation here is from [NT].

Theorem 2.1. Suppose that G has an abelian Sylow p-subgroup P . Let χ ∈ Irr(G).
If D ≤ P is a defect group of the block of χ, then there exists ν ∈ Irr(P ) such that
χP contains (νD)P . In particular, χP contains at least |P : D| different linear
constituents.

Proof. Suppose that (K,R, F ) is a p-modular system, and suppose that M is an
RG-module affording χ. We can take F to be algebraically closed (using Theorem
1.13.27 of [NT]). By Knörr’s Theorem (see [K]), we can choose M such that the
vertex of M is D. By Theorem 3 of [B], let W be an indecomposable RP -module
with vertex D and W |MP . By the same theorem, let W1 be an RD-module with
vertex D such that W |(W1)

P . Notice that by Lemma 4.7.1 of [NT], we have that
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indecomposable RG-modules are absolutely indecomposable. By Green’s indecom-
posability theorem 4.7.2 of [NT], we have that (W1)

P is indecomposable. Thus
W = (W1)

P . Now, suppose that W1 affords the character τ of D. Then (W1)
P

affords the character τP , which is therefore contained in χP . If λ ∈ Irr(D) is an
irreducible constituent of τ , then we have that χP contains λP . Now, since P is
abelian, we have that λ = νD for some ν ∈ Irr(P ), and it follows that χP contains
ν(1D)P . Now, this character has |P : D| distinct irreducible constituents. �
Corollary 2.2. Suppose that G has an abelian Sylow p-subgroup P . Let χ ∈ Irr(G).
If p divides χ(1), then χP contains at least p different constituents.

Proof. If D is a defect group of the block of χ, by the main result of [KM], we have
that D < P . �

3. Symmetric groups

The aim of this section is to prove Theorem A. In order to do this, we will first
show that the following fact holds. This was first conjectured in [G2].

Theorem 3.1. Let χ ∈ Irr(Sn) and let Pn be a Sylow p-subgroup of Sn. Then
χPn

has a linear constituent.

The first part of this section is devoted to the proof of Proposition 3.7 below.
This is the fundamental combinatorial step that will allow us to prove Theorem 3.1
in the second part of the section.

3.1. Combinatorics of partitions. We start by recalling some very basic combi-
natorial definitions and notation in the framework of the representation theory of
symmetric groups. We refer the reader to [J] or [O1] for a more detailed account.

A composition λ = (λ1, λ2, . . . , λs) is a finite sequence of positive integers. We
say that λi is a part of λ and that λ is a composition of |λ| =

∑
λi. We say

that λ is a partition if its parts are nonincreasingly ordered. The Young diagram
associated to λ is the set [λ] := {(i, j) ∈ N × N | 1 ≤ i ≤ s, 1 ≤ j ≤ λi}. For
any natural number n we denote by P(n) (respectively, C(n)) the set of partitions
(respectively, compositions) of n. We will sometimes write λ � n if λ ∈ P(n). For
μ ∈ C(n) we denote by μ� the unique partition obtained by reordering the parts of
μ. Moreover, if ν ∈ C(m), we denote by μ ◦ ν the composition of m + n obtained
by the concatenation of μ and ν. Let μ and λ be partitions. We say that μ is a
subpartition of λ, written μ ⊆ λ, if μi ≤ λi, for all i ≥ 1. When this occurs, we let
the skew Young diagram λ� μ be the subdiagram of [λ] defined by

λ� μ = {(i, j) ∈ N× N | 1 ≤ i ≤ s, μi < j ≤ λi}.
For any j ∈ {1, . . . , s} we let (λ � μ)j be the size of the jth row of λ � μ. More
precisely, we have (λ� μ)j = λj − μj .

Throughout this section we let n and q be fixed natural numbers, with q ≥ 2.
For any λ ∈ P(qn) we can uniquely write λ as λ = (μ◦ν)�, where μ is the partition
consisting of all the parts of λ that are not divisible by q and ν is the partition
consisting of all the parts of λ that are multiples of q. In particular we have that

(∗) λ =
(
(k1q + x1, . . . , ktq + xt) ◦ (r1q, . . . , rsq)

)�
,

where k1 ≥ k2 ≥ · · · ≥ kt ≥ 0, r1 ≥ r2 ≥ · · · ≥ rs > 0, and where xj ∈
{1, . . . , q − 1} for all j ∈ {1, . . . , t}. Since λ � qn there exists ζq(λ) ∈ N0 such that
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x1 + x2 + · · ·+ xt = ζq(λ)q. Notice that ζq(λ) =
1
q (x1 + · · ·+ xt) ≤ t · q−1

q ≤ t. The

notation introduced above will be kept for the rest of the section.
The following three definitions are central in the proof of Theorem 3.1. These

are described in a specific situation in Example 3.5 below.

Definition 3.2. Given λ as in equation (∗) above, we let Δq(λ) be the partition
of n defined by

Δq(λ) =
(
(k1 + 1, k2 + 1, . . . , kζq(λ) + 1, kζq(λ)+1, . . . , kt) ◦ (r1, r2, . . . , rs)

)�
.

Definition 3.3. We denote by Aλ the multiset of q-residues defined by Aλ =
{x1, . . . , xt}. We define a total order 	 on the indexing set {1, 2, . . . , t} as follows.
Let i, j be distinct elements in {1, . . . , t}. If xi > xj , then i 	 j. When xi = xj ,
then we let i 	 j if and only if i > j.

We denote by λ� the composition defined by

λ� = (ki1q + xi1 , ki2q + xi2 , . . . , kitq + xit),

where i1, . . . , it ∈ {1, . . . , t} are such that i1 	 i2 	 · · · 	 it.

Definition 3.4. Given λ as in equation (∗) above we let Ω(λ)� be the composition
defined by

Ω(λ)� =
(
λ� − (ki1 + 1, . . . , kiζq(λ)

+ 1, kiζq(λ)
, . . . , kit)

)
.

Moreover we denote by Ω(λ) the partition of (q − 1)n defined by

Ω(λ) =
[
Ω(λ)� ◦ (r1(q − 1), . . . rs(q − 1))

]�
.

In the following example we explicitly describe in a concrete situation all the
combinatorial objects introduced in Definitions 3.2, 3.3, and 3.4.

Example 3.5. Let q = 5, let n = 10, and let λ = (12, 9, 8, 6, 6, 5, 4) � 50.
We observe that λ has one part of size divisible by 5 and that x1 = 2, x2 =
4, x3 = 3, x4 = 1, x5 = 1, x6 = 4. In particular, we get ζ5(λ) = 3, and Δ5(λ) =
(3, 2, 2, 1, 1, 1, 0) � 10, by Definition 3.2. Following Definition 3.3 we observe that
6 	 2 	 3 	 1 	 5 	 4. This shows that λ� = (4, 9, 8, 12, 6, 6) and that
Ω(λ)� = λ� − (1, 2, 2, 2, 1, 1) = (3, 7, 6, 10, 5, 5). From Definition 3.4 we finally get
that Ω(λ) = (Ω(λ)� ◦ (4))� = (10, 7, 6, 5, 5, 4, 3) � 40. We conclude the example by
observing that Δ4(Ω(λ)) = (3, 2, 2, 1, 1, 1, 0) = Δ5(λ). As we will show below, this
is not a coincidence.

Our aim is to show that Δq(λ) = Δq−1(Ω(λ)), for all q, n ∈ N and all λ ∈ P(qn).
In order to do this, we first need to state the following technical lemma.

Lemma 3.6. Let q ≥ 3 and let λ = (k1q + x1, . . . , ktq + xt) be a partition of qn
such that x1, . . . , xt ∈ {1, 2, . . . , q − 1}. As usual we let ζq(λ) = (x1 + · · · + xt)/q.
For j ∈ {1, . . . , q − 1} let zj = |{i ∈ {1, . . . , t} | xi = j}|. The following hold:

(i) If zq−1 > ζq(λ), then 2ζq(λ) > t.
(ii) If z1 ≥ t− ζq(λ), then 2ζq(λ) ≤ t.

Proof. We first prove (i). Let I := {j ∈ {1, . . . , t} | xj 
= q−1}. Clearly t = |I|+zq−1

and

(�) qζq(λ) =
∑
j∈I

xj + zq−1(q − 1) ≥ |I|+ zq−1(q − 1).
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Using (�) we see that the following chain of inequalities holds:

2ζq(λ) +
q − 2

q
|I| =

2

q

(∑
j∈I

xj + zq−1(q − 1)
)
+

q − 2

q
|I|

≥ |I|+ 2
(q − 1

q

)
zq−1

= t+
(q − 2

q

)
zq−1.

In particular, we have that 2ζq(λ)−t ≥ q−2
q (zq−1−|I|). Suppose for a contradiction

that zq−1 − |I| ≤ 0. Then from equation (�) we would have that

q(ζq(λ)− zq−1) ≥ |I| − zq−1 ≥ 0,

which contradicts the hypothesis of (i). We conclude that 2ζq(λ) > t, as required.
In order to prove (ii) we set J := {j ∈ {1, . . . , t} | xj = 1} and we recall that

qζq(λ) = x1 + · · ·+ xt =
∑
j∈J

xj +
∑
j /∈J

xj .

Since |J | = z1 ≥ t− ζq(λ) and since every xj is at most q − 1 we have that

qζq(λ) ≤ t− ζq(λ) + (q − 1)ζq(λ).

Hence 2ζq(λ) ≤ t. �
Proposition 3.7. Let q ≥ 3. Then Δq−1(Ω(λ)) = Δq(λ) for all λ ∈ P(qn).

Proof. Keeping the notation introduced at the beginning of the section we write

λ =
(
(k1q + x1, . . . , ktq + xt) ◦ (r1q, . . . rsq)

)�
,

where k1 ≥ k2 ≥ · · · ≥ kt ≥ 0, r1 ≥ r2 ≥ · · · ≥ rs > 0, and where xj ∈ {1, . . . , q−1}
for all j ∈ {1, . . . , t}. Again ζq(λ) =

1
q · (x1+ · · ·xt) ∈ N0. From Definitions 3.2 and

3.4, it is easy to see that

Δq−1(Ω(λ)) =
[
Δq−1

(
(Ω(λ)�)�

)
◦ (r1, . . . rs)

]�
.

On the other hand we have

Δq(λ) =
(
(k1 + 1, k2 + 2, . . . , kζq(λ) + 1, kζq(λ)+1, . . . , kt) ◦ (r1, r2, . . . , rs)

)�
.

Hence it suffices to show that

Δq−1
(
(Ω(λ)�)�

)
= (k1 + 1, k2 + 2, . . . , kζq(λ) + 1, kζq(λ)+1, . . . , kt) .

In particular we can assume that λ = (λ�)� has no parts of size divisible by q
(hence we are in the setting of Lemma 3.6).

For j ∈ {1, . . . , q − 1} we let Zj := {y ∈ {1, . . . , t} | xy = j} and zj := |Zj |. To
ease the notation we will let z = zq−1. Let j1, . . . , jt ∈ {1, . . . , t} be such that

j1 	 j2 	 · · · 	 jt.

We denote by B the subset of {1, . . . , t} defined by B = {j1, . . . , jζq(λ)}. We proceed

by computing Δq−1(Ω(λ)) in two separate cases.
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(i) First assume that z ≤ ζq(λ). From the definition of the total order 	, we see
that if y ∈ {1, . . . , t} and xy = q − 1, then y is one of the greatest ζq(λ) elements
in {1, . . . , t}. Namely y ∈ B. In particular, we have that

Ω(λ)y =

⎧⎪⎨
⎪⎩
(q − 1)ky + xy if y ∈ {1, . . . , t}� B,
(q − 1)ky + (xy − 1) if y ∈ B � V0,

(q − 1)ky + 0 if y ∈ V0 ,

where V0 = Z1 ∩B. Then we have that AΩ(λ) = {xu, (xv − 1) | u /∈ B, v ∈ B�V0}.
Hence we deduce that

(q−1)ζq−1(Ω(λ)) =
∑
u/∈B

xu+
∑

v∈B�V0

(xv −1) =
∑
u/∈B

xu+
∑
v∈B

(xv −1) = (q−1)ζq(λ).

Therefore we get that ζq−1(Ω(λ)) = ζq(λ).
Moreover, we claim that V0 ⊆ {ζq(λ)+1, ζq(λ)+2, . . . , t}. In order to prove this,

we observe that from the definition of the total order 	 on {1, . . . , t} it follows that
if y ∈ V0 
= ∅, then for all y′ /∈ B we have that xy′ = 1 and y′ < y. This shows that
z1 = t− ζq(λ) + |V0| ≥ t− ζq(λ) + 1 and that y ≥ t− ζq(λ) + 1. By Lemma 3.6(ii)
we obtain that 2ζq(λ) ≤ t. This implies that y ≥ ζq(λ) + 1.

Therefore we obtain that Δq−1(Ω(λ)) can be written as follows:

Δq−1(Ω(λ))y =

⎧⎪⎨
⎪⎩
ky + 1 if y ∈ {1, . . . , ζq(λ)},
ky if y ∈ {ζq(λ) + 1, . . . , t}� V0,

ky if y ∈ V0 .

It follows that Δq−1(Ω(λ)) = Δq(λ), as required.
(ii) Suppose now that z > ζq(λ). Then by Lemma 3.6(i), we have that t < 2ζq(λ).

Moreover we observe that in this case we have that xy = q− 1 for all y ∈ B. Hence
we have that t ≥ j1 > j2 > · · · > jζq(λ) and therefore that jζq(λ) ≤ t − ζq(λ) + 1.
Let Vq−1 be the subset of {1, . . . , t} defined by

Vq−1 =
(
{1, . . . , t}� B

)
∩ Zq−1.

We claim that Vq−1 ⊆ {1, . . . , ζq(λ)}. This can be seen by observing that for
y ∈ Vq−1 we have that y 
 u for all u ∈ B. Equivalently this shows that y < u for
all u ∈ B. Therefore we have that y < jζq(λ) ≤ t− ζq(λ) + 1 ≤ ζq(λ).

This shows that we can express Ω(λ) as follows:

Ω(λ)y =

⎧⎪⎨
⎪⎩
(q − 1)ky + xy if y ∈

(
{1, . . . , t}� B

)
� Vq−1,

(q − 1)ky + (q − 1) if y ∈ Vq−1,

(q − 1)ky + (xy − 1) if y ∈ B .

Since xy − 1 = q − 2 > 0 for all y ∈ B, we obtain that

(q − 1)ζq−1(Ω(λ)) = qζq(λ)− (q − 1)|Vq−1| − |B| = (q − 1)
(
ζq(λ)− |Vq−1|

)
.

We deduce that ζq−1(Ω(λ)) = ζq(λ)− |Vq−1|. This implies the following equality:

Δq−1(Ω(λ))y =

⎧⎪⎨
⎪⎩
ky + 1 if y ∈ {1, . . . , ζq(λ)}� Vq−1,

ky + 1 if y ∈ Vq−1,

ky if y ∈ {ζq(λ) + 1, . . . , t} .
We conclude that Δq−1(Ω(λ)) = Δq(λ) also in this case. �
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3.2. Characters of Sn. In this second part of the section we apply the combi-
natorial ideas introduced above (especially Proposition 3.7) to prove Theorem 3.1.
A key ingredient in our proof will be a rather sophisticated use of the Littlewood–
Richardson rule (see [J, Chapter 16]). For the convenience of the reader we recall
this here.

Definition 3.8. Let A = a1, . . . , ak be a sequence of positive integers. The type
of A is the sequence of nonnegative integers m1,m2, . . . , where mi is the number
of occurrences of i in a1, . . . , ak. We say that A is a reverse lattice sequence if
the type of its prefix a1, . . . , aj is a partition, for all j ≥ 1. Equivalently, for each
j = 1, . . . , k such that aj = i ≥ 2, we require that

|{u | 1 ≤ u ≤ j, au = i− 1}| ≥ |{v | 1 ≤ v ≤ j, av = i}|.
In this case we say that the element aj is good in A.

Let ω � n and δ � m. The outer tensor product χω ⊗ χδ is an irreducible
character of Sn ×Sm. Inducing this character to Sn+m we may write

(χω ⊗ χδ)Sn+m =
∑

λ�(n+m)

Cλ
ω,δχ

λ.

The Littlewood–Richardson rule asserts that Cλ
ω,δ is zero if ω 
⊆ λ and otherwise

equals the number of ways to replace the nodes of the skew Young diagram λ� ω
by natural numbers such that

(1) The numbers are weakly increasing along rows.
(2) The numbers are strictly increasing down the columns.
(3) The sequence obtained by reading the numbers from right to left and top

to bottom is a reverse lattice sequence of type δ.

We call any such configuration a Littlewood–Richardson tableau of type δ for λ�ω.
Let H be a finite group. From now on we denote by Hn the n-fold direct product

H×H×· · ·×H. Similarly, for θ ∈ Irr(H) we denote by θ⊗n the irreducible character
of Hn defined by θ⊗n = θ ⊗ · · · ⊗ θ︸ ︷︷ ︸

n

.

The following statement is a fundamental step to complete the proof of Theorem
3.1 and was first conjectured in [G2, Conjecture B].

Theorem 3.9. Let n and q be natural numbers, with q ≥ 2. Let λ ∈ P(qn) and let
μ = Δq(λ) ∈ P(n). Then (χμ)⊗q is an irreducible constituent of (χλ)Sq

n
.

Proof. We proceed by induction on q ∈ N≥2. Let q = 2 and let

λ =
(
(2k1 + 1, 2k2 + 1, . . . , 2kt + 1) ◦ (2r1, . . . , 2rs)

)� ∈ P(2n),

for some k1 ≥ k2 ≥ · · · ≥ kt ≥ 0, r1 ≥ r2 ≥ · · · ≥ rs > 0. Clearly t must
be even. We write t = 2ζ2(λ) for some ζ2(λ) ∈ N0. It will be convenient to
write {1, 2, . . . , t + s} = O ∪ E , where O = {j ∈ {1, 2, . . . , t + s} | λj is odd} and
E = {j ∈ {1, 2, . . . , t+s} | λj is even}. Clearly |O| = t, and it is convenient to write
it as

O = {h1, h2, . . . , ht},
where 1 ≤ h1 < h2 < · · · < ht ≤ t + s. In particular, we have that λhi

= 2ki + 1,
for all i ∈ {1, . . . , t}.
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By Definition 3.2 we obtain that

μ := Δ2(λ) =
(
(k1 + 1, . . . , kζ2(λ) + 1, kζ2(λ)+1, . . . , kt) ◦ (r1, . . . , rs)

)� ∈ P(n).

Clearly μ is a subpartition of λ. Let S(λ) be the skew Young diagram defined by
S(λ) = λ� μ. We observe that S(λ)hi

= ki for 1 ≤ i ≤ ζ2(λ), S(λ)hi
= ki + 1 for

ζ2(λ) + 1 ≤ i ≤ t, and S(λ)j =
λj

2 for all j ∈ E .
To prove that (χμ)⊗2 is a consitutent of (χλ)S2

n
, it is enough to show that

there exists a way to replace the nodes of S(λ) by integers in order to obtain a
Littlewood–Richardson tableau of type μ. This is done as follows.

Step 1. Let j ∈ {1, . . . , t + s}. If j ∈ E , then replace all the
λj

2 nodes of row j of

S(λ) by j. If j ∈ O, then replace the rightmost
λj−1

2 nodes of row j of S(λ) by j.

At this stage we still have ζ2(λ) empty nodes b1, . . . , bζ2(λ) in S(λ). Each of
these nodes is the leftmost node in its row. More precisely, bi is the leftmost node
of row hζ2(λ)+i of S(λ). Moreover each bi is either at the top of its column or lies
below the empty node bi−1. This observation follows easily from the construction
of S(λ) = λ� μ.

Step 2. Replace node bi by hi, for all i ∈ {1, . . . , ζ2(λ)}.
We now have that for all j /∈ {hζ2(λ)+1, hζ2(λ)+2, . . . , ht} all nodes of row j of S(λ)

have been replaced by j. On the other hand, row hζ2(λ)+i has hi in the leftmost node
and hζ2(λ)+i in all other nodes. We conclude that numbers are weakly increasing
along rows. Since each node bi (empty node after Step 1) is either at the top of
its column or lies below bi−1, it follows that after Step 2 the numbers are strictly
increasing down the columns. Finally let A be the sequence obtained by reading
the numbers from right to left and top to bottom. It is clear by construction that
A is a sequence of type μ. Moreover, for j ≥ 2 we have that the number of nodes
replaced by j in row j of S(λ) is smaller than or equal to the number of nodes
replaced by j − 1 in row j − 1 of S(λ). Hence every j appearing in row j is good.
If j replaces a node lying below row j, then j = hi replaces node bi in row hζ2(λ)+i,
for some i ∈ {1, . . . , ζ2(λ)}. By construction we know that the nodes of S(λ) that
are replaced by j − 1 are all lying in higher rows than hζ2(λ)+i. In fact at most one
j − 1 lies in row hζ2(λ)+(i−1) (if j = hi−1), while all other j − 1 replace nodes of
row j − 1. Hence also in this case j is good, and therefore A is a good sequence of
type μ.

We conclude that Steps 1 and 2 provide us with a Littlewood–Richardson tableau
of type μ. Therefore we deduce that (χμ)⊗2 is a constituent of (χλ)Sn×Sn

.
Suppose now that q ≥ 3. As usual let

λ =
(
(k1q + x1, . . . , ktq + xt) ◦ (r1q, . . . , rsq)

)�
,

where k1 ≥ k2 ≥ · · · ≥ kt ≥ 0, r1 ≥ r2 ≥ · · · ≥ rs > 0, and where xj ∈
{1, . . . , q − 1} for all j ∈ {1, . . . , t}. Let ζq(λ) = 1

q · (x1 + · · · + xt) ∈ N0. Again

we write {1, 2, . . . , t + s} = O ∪ E , where O = {j ∈ {1, 2, . . . , t+ s} : q � λj} and
E = {j ∈ {1, 2, . . . , t+ s} : q|λj}. Clearly |O| = t, and it is convenient to write it
in two different ways, as follows:

O = {h1, h2, . . . , ht} = {g1, g2, . . . , gt},
where 1 ≤ g1 < g2 < · · · < gt ≤ t+ s and h1 
 h2 
 · · · 
 ht (see Definition 3.3).
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By Definition 3.2 we obtain that

μ := Δq(λ) =
(
(k1 + 1, k2 + 1, . . . , kζq(λ) + 1, kζq(λ)+1, . . . , kt) ◦ (r1, r2, . . . , rs)

)�
.

In particular we have μgj = kj +1 for all 1 ≤ j ≤ ζq(λ), μgj = kj for all ζq(λ)+1 ≤
j ≤ t, and μi =

λi

q for all i ∈ E .
Let Ω := Ω(λ) be the partition of (q − 1)n introduced in Definition 3.4. Using

the inductive hypothesis together with Proposition 3.7 we deduce that (χμ)⊗q−1 is
an irreducible constituent of (χΩ)

S
q−1
n

.

Clearly Ω is a subpartition of λ, hence we let S(λ) := λ�Ω. Observe in particular
that row hj of S(λ) consists of kj + 1 nodes for all t − ζq(λ) + 1 ≤ j ≤ t. On the
other hand, if 1 ≤ j ≤ t− ζq(λ), then row hj of S(λ) consists of kj nodes.

To conclude the proof it is enough to show that there exists a way to replace
the nodes of S(λ) by integers in order to obtain a Littlewood–Richardson tableau
of type μ. This is done using the following algorithm (it might be convenient for
the reader to read the following steps together with Example 3.10 below).

Step 1. For j ∈ E replace all the
λj

q nodes of row j of S(λ) by j. For j ∈ O we have

that λj = qki + xi for some i ∈ {1, . . . , t}. Then replace the ki rightmost nodes of
row j of S(λ) by j.

After Step 1 is completed, we have precisely ζq(λ) nodes b1, . . . , bζq(λ) of S(λ)
that have not yet been replaced by integers. Each bi is the leftmost node of row
fi, where fi ∈ {ht−ζq(λ)+1, ht−ζq(λ)+2, . . . , ht} is defined such that f1 < f2 < · · · <
fζq(λ). (This third change of notation for some of the elements of O is necessary to
understand the relative ordering of the rows having an empty node at this stage).

Moreover, for all i ∈ {1, . . . , ζq(λ)} we have that bi is either at the top of its
column or bi−1 is the node above bi. This is proved as follows. Let λfi = kq + z
and λfi−1 = wq + y for some k, z, w, y ∈ N such that k ≤ w, 1 ≤ z ≤ q − 1, and
0 ≤ y ≤ q − 1. Suppose that bi is not at the top of its column in S(λ). Then we
necessarily have k = w and hence that 1 ≤ z ≤ y ≤ q − 1. If y > z, then from
Definition 3.3 we deduce that y 	 z and therefore that i ≥ 2 and fi− 1 = fi−1 and
hence that

Ωfi−1 = λfi−1 − (k + 1) = k(q − 1) + (y − 1) > k(q − 1) + (z − 1) = Ωfi .

This would imply that bi is a the top of its column. Hence we must discard this situa-
tion as well and assume that λfi = λfi−1. If fi−1 /∈ {ht−ζq(λ)+1, ht−ζq(λ)+2, . . . , ht},
then again we would have

Ωfi−1 = λfi−1 − k = k(q − 1) + y > k(q − 1) + (y − 1) = Ωfi ,

which would imply that bi is at the top of its column. Hence i ≥ 2, fi − 1 = fi−1,
and

Ωfi−1
= k(q − 1) + (y − 1) = Ωfi ,

which implies that bi lies below the mostleft node of row fi−1 = fi−1 of S(λ), that
is, node bi−1.

Step 2. For every i ∈ {1, . . . , ζq(λ)} replace node bi by gi.

The remarks after Step 1 guarantee that the configuration obtained has integers
strictly increasing down the columns. Since gi ≤ fi for all i ∈ {1, . . . , ζq(λ)} we
easily deduce that the integers are weakly increasing along the rows (from left to
right). It is not difficult to see that the sequence obtained by reading the integers
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from right to left and top to bottom is a good sequence of type μ (a full proof of
this fact is completely similar to the one given above for the base case q = 2).

We conclude that χΩ ⊗ χμ is an irreducible constituent of (χλ)S(q−1)n×Sn
. This

completes the proof. �
Before proceeding with the proof of Theorem 3.1, we illustrate in a concrete

example Steps 1 and 2 described in the proof of Theorem 3.9.

Example 3.10. Let q = 5, n = 10, and let λ = (12, 9, 8, 6, 6, 5, 4) � 50 be as in
Example 3.5. Then the Littlewood–Richardson tableau of type Δ5(λ) for λ�Ω(λ),
described in the proof of Theorem 3.9, is depicted in Figure 1.

• • • 1 2

• 2 3

• 4

• 5

••
•

• •

•

•

X X X • • • • • • • 1 1

X

X

X

X

X

X

•
•

•
X

•
•

•
• • 6

3

•
•

• •

[λ] =

Figure 1. The Young diagram [Δ5(λ)] consists of those boxes
containing an X. The Young diagram [Ω(λ)] is the union of the
boxes of [Δ5(λ)] and of those boxes containing a black dot. The
skew Young diagram S(λ) consists of the remaining boxes contain-
ing numbers. Nonunderlined numbers correspond to Step 1 of the
algorithm described in the proof of Theorem 3.9. Underlined num-
bers are assigned to the boxes of S(λ) according to Step 2 of the
algorithm.

We can now prove Theorem 3.1, using Theorem 3.9.

Proof of Theorem 3.1. Let p be a prime number and let k ∈ N. We let P := Ppk

be a Sylow p-subgroup of Spk . Then P = B � Cp, where

B = Ppk−1 × · · · × Ppk−1 ≤ Spk−1 × · · · ×Spk−1 = S
p
pk−1 ,

and Cp acts on B permuting its p direct factors. We show by induction on k that
χP has a linear constituent. If k = 1 this is obvious since P is abelian. Suppose that
k ≥ 2. By Theorem 3.9 there exists θ ∈ Irr(Spk−1) such that θ⊗p is an irreducible
constituent of χS

p

pk−1
. By inductive hypothesis there exists a linear character φ

of Ppk−1 appearing as an irreducible constituent of θP
pk−1

. Hence there exists an

irreducible constituent ψ of χP lying above φ⊗p ∈ Irr(B). Now, φ⊗p is Cp-invariant
and it naturally extends to an irreducible character of P . This observation allows
us to use Gallagher’s Corollary (see [I, 6.17]) to deduce that ψ is linear, since
P/B ∼= Cp is abelian.

Now let n be any natural number, with p-adic expansion n =
∑

j ajp
j . If Pn is

a Sylow p-subgroup of Sn, then we have that

Pn =
k∏

j=0

(Ppj )aj ≤
k∏

j=0

(Spj )aj =: H.
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Since χP = (χH)P the result follows. �
In order to prove Theorem A for symmetric groups, we need the following ob-

servation.

Lemma 3.11. Let k be a positive integer. There exists a pk-cycle g ∈ Ppk ≤ Spk

such that the following hold:

(i) θ(g) is a pth root of unity for every linear character θ of Ppk .
(ii) δ(g) = 0 for all δ ∈ Irr(Ppk) such that p | δ(1).

Proof. Recall that Ppk = Ppk−1 �Cp = B �Cp, where B = Ppk−1 × · · · × Ppk−1 . Let

g ∈ Ppk = Ppk−1 � Cp be a pk-cycle of the form

g = (h, 1, . . . , 1; k),

for some h ∈ Ppk−1 such that h is a pk−1-cycle in Spk−1 and k ∈ Cp.
To prove (i), we proceed by induction on k. If k = 1 the result follows trivially.

Suppose that k ≥ 2. For φ ∈ Irrp′(Ppk−1) we let φ̂ be the natural extension of
φ⊗p ∈ Irr(B) to Ppk−1 . By Gallagher’s Corollary (see [I, 6.17]) we have that

Irr(Ppk | φ⊗p) = {X (φ;ψ) | ψ ∈ Irr(Cp)},

where X (φ;ψ) = φ̂ · infPpk

Cp
(ψ). In particular, we observe that

Irrp′(Ppk) = {X (φ;ψ) | φ ∈ Irrp′(Ppk−1), ψ ∈ Irr(Cp)}.
If θ = X (φ;ψ) is a linear character of Ppk , then we have that θ(x) = X (φ;ψ)(g) =
φ(h)ψ(k) (see for instance [JK, Lemma 4.3.9]). By inductive hypothesis we deduce
that θ(x) is a pth root of unity.

Statement (ii) is proved similarly. �
Remark 3.12. Let k ∈ N. For s ∈ {0, 1, . . . , k − 1} let γs be the element of Spk

defined by

γs =

ps∏
j=1

(j, j + ps, j + 2ps, . . . , j + (p− 1)ps).

Then P := 〈γ0, γ1, . . . , γk−1〉 is a Sylow p-subgroup of Spk and g = γ0γ1 · · · γk−1 ∈
P is a pk-cycle satisfying conditions (i) and (ii) of Lemma 3.11.

We are now ready to prove Theorem A.

Proof of Theorem A. Let us first deal with the case where n = pk, for some k ∈ N.
Since p divides χ(1) we know that χ = χλ for some λ ∈ P(n) such that λ is not a
hook partition. By Theorem 3.1 we know that there exists a linear constituent θ1
of χP . Suppose for a contradiction that there exists 1 ≤ t < p such that

χP =

t∑
j=1

cjθj +Δ,

where for all 1 ≤ j < p we have that θj(1) = 1, cj ∈ N≥1 and where Δ is a sum
of irreducible characters of P of degree divisible by p. Let g ∈ P be a pk-cycle
satisfying conditions (i) and (ii) of Lemma 3.11. Since λ is not a hook partition we
have that χ(g) = 0. Moreover, from Lemma 3.11 we obtain that

0 = χ(g) = c1θ1(g) + c2θ2(g) + · · ·+ ctθt(g).
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This is a contradiction since no N-linear combination of t pth roots of unity can be
equal to 0.

Let us now consider the case where n is not a power of p. Let n =
∑k

j=0 ajp
j

be the p-adic expansion of n and let g ∈ Pn be the product of aj pj-cycles for
j ∈ {0, 1, . . . , k}. By [MNO, Theorem 4.1] we have that χ(g) = 0 for all χ ∈ Irr(Sn)
such that p | χ(1). Since

Pn =
k∏

j=0

(Ppj )aj ,

we deduce from Lemma 3.11 (and Remark 3.12) that g can be chosen such that:

- δ(g) = 0 for all δ ∈ Irr(Pn) such that p | δ(1);
- θ(g) is a pth root of unity for any linear character θ of Pn.

Arguing exactly as in the case where n = pk we obtain that χPn
must have at

least p distinct linear constituents. �
Remark 3.13. As mentioned in the introduction, we can always find an arbitrarily
large natural number n such that Sn admits irreducible even-degree characters
whose restriction to a Sylow 2-subgroup has exactly 2 constituents. An example
follows. Let p = 2 and let n = 2k + 1 for some k ∈ N such that k ≥ 2. Let
λ ∈ {(n−x, 1x) | x ∈ {1, . . . , n−2}} and let P be a Sylow 2-subgroup of Sn. Then
it is easy to see that (χλ)P = ψx + ψx−1 +Δ, where Δ is a sum (possibly empty)
of irreducible characters of P of even degree and where ψj ∈ Irr(P ) is the unique

linear constituent of (χ(2k−j,1j))P for any j ∈ {0, 1, . . . , 2k − 1} (as prescribed by
[G1]).

A full classification of these instances will be the subject of a different article.
This will also include a proof of Conjecture D for alternating groups. When p is
odd, this is just an easy consequence of the result proved for symmetric groups.
For p = 2 more attention and more combinatorics are required.

4. p-solvable groups

In this section, we prove Theorem B. First, we need a lemma.

Lemma 4.1. Suppose that G/M is a p-group, and let χ ∈ Irr(G) such that χM is
not irreducible. Then there exists M ⊆ U � G of index p such that χ = γG, for
some γ ∈ Irr(U).

Proof. Let N/M � G/M such that χN is irreducible such that |N/M | is as small as
possible. We know that N > M . Since G/M is a p-group, let N > E ≥ M be such
that E � G and |N : E| = p. Write τ = χN . Since τE is not irreducible, it follows
by Corollary 6.19 of [I] that τE is not homogeneous. So χE is not homogeneous.
Thus, by the Clifford correspondence, χ is induced from a character of a proper
subgroup containing M , which we may assume has index p, and therefore is normal
in G. �

Next we prove a relative version of Theorem B, which is obtained in the case
where K = 1.

Theorem 4.2. Suppose that K � G, and let P/K be a nontrivial Sylow p-subgroup
of G/K. Let χ ∈ Irr(G) be such that χP contains λ ∈ Irr(P ) such that λK is
irreducible and χ(1)/λ(1) is divisible by p. If G/K is p-solvable, then there exists
K ⊆ V ⊆ P of index p such that χP contains (λV )

P .
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Proof. We argue by induction on |G : K|. Suppose that there exists P ⊆ H < G
with a character ψ ∈ Irr(H) under χ and over λ such that p divides ψ(1)/λ(1).
Then χP contains ψP , and we are done by induction.

Let ν = λK ∈ Irr(K), which lies under χ. Let T be the stabilizer of ν in G.
Now P ⊆ T ⊆ G. Let ψ ∈ Irr(T ) be under χ and over λ. Thus ψG = χ by the
Clifford correspondence. Also, p divides ψ(1)/ν(1). Hence, by induction we may
assume that T = G. Now we use the properties of character triple isomorphisms in
Definition 11.23 of [I] and Theorem 11.28 of [I] to show that we may assume that K
is central. Suppose now that (G∗,K∗, ν∗) is a triple isomorphic to (G,K, ν) with
K∗ ⊆ Z(G∗). Write

∗ : G/K → G∗/K∗

for the associated isomorphism, and for subgroups K ≤ H ≤ G, write (H/K)∗ =
H∗/K∗. Also, write ψ∗ ∈ Irr(H∗|ν∗) for the image of ψ ∈ Irr(H|ν) under the
isomorphism. By Definition 11.23(b) of [I], we have that λ∗ is an irreducible con-
stituent of χ∗. By Lemma 11.24 of [I], we have that (λ∗)K∗ is irreducible because
λK = ν. By the same lemma, p divides χ∗(1)/ν∗(1) = χ∗(1). We show next that if
the theorem is true in G∗, then it is true inK∗. Suppose thatK∗ ≤ V ∗ ≤ P ∗ has in-
dex p and that (χ∗)P ∗ contains ((λ∗)V ∗)P

∗
. Notice that ((λ∗)V ∗)P

∗
= ((λV )

∗)P
∗
by

Definition 11.23(b). Again by Definition 11.23(b) and using Frobenius reciprocity,
we have that

((λV )
∗)P

∗
= ((λV )

P )∗.

Therefore (χ∗)P ∗ contains ((λV )
P )∗, and therefore χP contains (λV )

P , again by
Definition 11.23(b) and Frobenius reciprocity.

Notice that G/K is not a p-group, because otherwise P = K, χ = λ, and p does

not divide χ(1)/λ(1). Let M/K = Op(G/K), N/K = Op′
(M/K), and H = PN .

Notice that H < G, because G/K is not a p-group. Now, let ψ ∈ Irr(H) be under χ
and over λ. Then p does not divide ψ(1) by the first paragraph. Thus, by Corollary
11.29 of [I], we have that ρ = ψN ∈ Irr(N) has p′-degree, lies under χ. If χM is
irreducible, then using that M/N is a p′-group and that ρ has p′-degree, we would
deduce that χ(1) has p′-degree, again by Corollary 11.29 of [I]. So we deduce that
χM is not irreducible. By Lemma 4.1, there exists M ⊆ U � G of index p, and
γ ∈ Irr(U) such that γG = χ. Let K ⊆ V = P ∩ U . Notice that UP = G and that
V has index p in P . Now, by Mackey,

χP = (γV )
P

contains λ. So γV contains λV , and χP contains (λV )
P . �
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