Riesz bases of exponentials on unbounded multi-tiles
HTML articles powered by AMS MathViewer
- by Carlos Cabrelli and Diana Carbajal
- Proc. Amer. Math. Soc. 146 (2018), 1991-2004
- DOI: https://doi.org/10.1090/proc/13980
- Published electronically: January 29, 2018
- PDF | Request permission
Abstract:
We prove the existence of Riesz bases of exponentials of $L^2(\Omega )$, provided that $\Omega \subset \mathbb {R}^d$ is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.References
- Elona Agora, Jorge Antezana, and Carlos Cabrelli, Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Adv. Math. 285 (2015), 454–477. MR 3406506, DOI 10.1016/j.aim.2015.08.006
- Boris Alexeev, Jameson Cahill, and Dustin G. Mixon, Full spark frames, J. Fourier Anal. Appl. 18 (2012), no. 6, 1167–1194. MR 3000979, DOI 10.1007/s00041-012-9235-4
- Marcin Bownik, The structure of shift-invariant subspaces of $L^2(\textbf {R}^n)$, J. Funct. Anal. 177 (2000), no. 2, 282–309. MR 1795633, DOI 10.1006/jfan.2000.3635
- D. Barbieri, C. Cabrelli, E. Hernández, P. Luthy, U. Molter and C. Mosquera, C. R. Math. Acad. Sci. Paris, to appear 2018.
- Davide Barbieri, Eugenio Hernández, and Azita Mayeli, Lattice sub-tilings and frames in LCA groups, C. R. Math. Acad. Sci. Paris 355 (2017), no. 2, 193–199. MR 3612708, DOI 10.1016/j.crma.2016.11.017
- Carlos Cabrelli and Victoria Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal. 258 (2010), no. 6, 2034–2059. MR 2578463, DOI 10.1016/j.jfa.2009.11.013
- Bálint Farkas, Máté Matolcsi, and Péter Móra, On Fuglede’s conjecture and the existence of universal spectra, J. Fourier Anal. Appl. 12 (2006), no. 5, 483–494. MR 2267631, DOI 10.1007/s00041-005-5069-7
- Bálint Farkas and Szilárd Gy. Révész, Tiles with no spectra in dimension 4, Math. Scand. 98 (2006), no. 1, 44–52. MR 2221543, DOI 10.7146/math.scand.a-14982
- Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121. MR 0470754, DOI 10.1016/0022-1236(74)90072-x
- Sigrid Grepstad and Nir Lev, Multi-tiling and Riesz bases, Adv. Math. 252 (2014), 1–6. MR 3144222, DOI 10.1016/j.aim.2013.10.019
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- A. Iosevich, Fuglede conjecture for lattices, preprint available at www.math.rochester.edu /people/faculty/iosevich/expository/FugledeLattice.pdf.
- Alex Iosevich, Nets Katz, and Terence Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559–569. MR 2024715, DOI 10.4310/MRL.2003.v10.n5.a1
- Gady Kozma and Shahaf Nitzan, Combining Riesz bases, Invent. Math. 199 (2015), no. 1, 267–285. MR 3294962, DOI 10.1007/s00222-014-0522-3
- Gady Kozma and Shahaf Nitzan, Combining Riesz bases in $\Bbb {R}^d$, Rev. Mat. Iberoam. 32 (2016), no. 4, 1393–1406. MR 3593529, DOI 10.4171/RMI/922
- Mihail N. Kolountzakis, Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc. 143 (2015), no. 2, 741–747. MR 3283660, DOI 10.1090/S0002-9939-2014-12310-0
- Mihail N. Kolountzakis and Máté Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519–528. MR 2237932, DOI 10.1515/FORUM.2006.026
- Mihail N. Kolountzakis, Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44 (2000), no. 3, 542–550. MR 1772427
- Basarab Matei and Yves Meyer, Simple quasicrystals are sets of stable sampling, Complex Var. Elliptic Equ. 55 (2010), no. 8-10, 947–964. MR 2674875, DOI 10.1080/17476930903394689
- Basarab Matei and Yves Meyer, Quasicrystals are sets of stable sampling, C. R. Math. Acad. Sci. Paris 346 (2008), no. 23-24, 1235–1238 (English, with English and French summaries). MR 2473299, DOI 10.1016/j.crma.2008.10.006
- Shahaf Nitzan, Alexander Olevskii, and Alexander Ulanovskii, Exponential frames on unbounded sets, Proc. Amer. Math. Soc. 144 (2016), no. 1, 109–118. MR 3415581, DOI 10.1090/proc/12868
- Kristian Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, vol. 33, American Mathematical Society, Providence, RI, 2004. MR 2040080, DOI 10.1090/ulect/033
- Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251–258. MR 2067470, DOI 10.4310/MRL.2004.v11.n2.a8
- Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005), no. 1, 121–127. MR 2122735, DOI 10.4310/MRL.2005.v12.n1.a11
- Robert M. Young, An introduction to nonharmonic Fourier series, 1st ed., Academic Press, Inc., San Diego, CA, 2001. MR 1836633
Bibliographic Information
- Carlos Cabrelli
- Affiliation: Departamento de Matemática, Universidad de Buenos Aires, Instituto de Matemática “Luis Santaló” (IMAS-CONICET-UBA), Buenos Aires, Argentina
- MR Author ID: 308374
- ORCID: 0000-0002-6473-2636
- Email: cabrelli@dm.uba.ar
- Diana Carbajal
- Affiliation: Departamento de Matemática, Universidad de Buenos Aires, Instituto de Matemática “Luis Santaló” (IMAS-CONICET-UBA), Buenos Aires, Argentina
- Email: dcarbajal@dm.uba.ar
- Received by editor(s): January 24, 2017
- Received by editor(s) in revised form: May 8, 2017
- Published electronically: January 29, 2018
- Additional Notes: The research of the authors was partially supported by Grants: CONICET PIP 11220110101018, PICT-2014-1480, UBACyT 20020130100403BA, UBACyT 20020130100422BA.
- Communicated by: Alexander Iosevich
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 1991-2004
- MSC (2010): Primary 42B99, 42C15; Secondary 42A10, 42A15
- DOI: https://doi.org/10.1090/proc/13980
- MathSciNet review: 3767351