LEFSCHETZ DECOMPOSITIONS FOR EIGENFORMS ON A KÄHLER MANIFOLD

DONU ARAPURA

(Communicated by Lei Ni)

Abstract

We show that the eigenspaces of the Laplacian Δ_{k} on k-forms on a compact Kähler manifold carry Hodge and Lefschetz decompositions. Among other consequences, we show that the positive part of the spectrum of Δ_{k} lies in the spectrum of Δ_{k+1} for $k<\operatorname{dim} X$.

Given a compact Riemannian manifold X without boundary, let Δ_{k} denote the Laplacian on k-forms and $\lambda_{1}^{(k)}$ its smallest positive eigenvalue. We can ask how these numbers vary with k. By differentiating eigenfunctions, we easily see that $\lambda_{1}^{(0)} \geq \lambda_{1}^{(1)}$. For $k>1$, the situation is more complicated: Takahashi T2] has shown that the sign of $\lambda_{1}^{(k)}-\lambda_{1}^{(0)}$ can be arbitrary for compact Riemannian manifolds. More generally, Guerini and Savo G, GS have constructed examples, where the sequence $\lambda_{1}^{(2)}, \lambda_{1}^{(3)}, \ldots, \lambda_{1}^{([\operatorname{dim} X / 2])}$ can do just about anything. The goal of this note is to show that when X is compact Kähler, the eigenspaces carry extra structure, and that this imposes strong constraints on the eigenvalues and their multiplicities. For instance, we show that the eigenvalues of Δ_{k} occur with even multiplicities when k is odd. We also show that the positive part of the spectrum of Δ_{k} is contained in the spectrum of Δ_{k+1} for all $k<\operatorname{dim}_{\mathbb{C}} X$. Therefore the sequence $\lambda_{1}^{(0)}, \ldots, \lambda_{1}^{\left(\operatorname{dim}_{C} X\right)}$ is weakly decreasing.

After this paper was submitted, it was brought to the author's attention that Jakobson, Strohmaier, and Zelditch [JSZ] have also studied the spectra of Kähler manifolds, although for rather different reasons.

1. Main theorems

For the remainder of this paper, X will denote a compact Kähler manifold of complex dimension n, with Kähler form ω. Let $\Delta=d^{*} d+d d^{*}$ be the Laplacian on complex valued forms \mathcal{E}^{*}. Standard arguments in Hodge theory guarantee that the spectrum of Δ is discrete, and the eigenspaces

$$
\mathcal{E}_{\lambda}^{*}=\left\{\alpha \in \mathcal{E}^{*} \mid \Delta \alpha=\lambda \alpha\right\}
$$

are finite dimensional. Since Δ is positive and self adjoint, the eigenvalues are nonnegative real. We let $\mathcal{E}_{\lambda}^{k}$ and $\mathcal{E}_{\lambda}^{(p, q)}$ denote the intersection of $\mathcal{E}_{\lambda}^{*}$ with the space of k forms and (p, q)-forms respectively.

The proofs of the following statements will naturally hinge on the Kähler identities GH W, which we recall below. We have

$$
\Delta=2\left(\partial \partial^{*}+\partial^{*} \partial\right)=2\left(\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}\right)
$$

which implies that it commutes with the projections $\pi^{p q}, \pi^{k}: \mathcal{E}^{*} \rightarrow \mathcal{E}^{(p, q)}, \mathcal{E}^{k}$. The Laplacian Δ also commutes with the Lefschetz operator $L(-)=\omega \wedge-$ and its adjoint Λ. An additional set of identities implies that L, Λ and $H=\sum(n-k) \pi^{k}$ together determine an action of the Lie algebra $s l_{2}(\mathbb{C})$ on \mathcal{E}^{*}.

Theorem 1.1. For each λ, there is a Hodge decomposition

$$
\begin{gather*}
\mathcal{E}_{\lambda}^{k}=\bigoplus_{p+q=k} \mathcal{E}_{\lambda}^{(p, q)} \tag{1}\\
\overline{\mathcal{E}_{\lambda}^{(p, q)}}=\mathcal{E}_{\lambda}^{(q, p)} \tag{2}
\end{gather*}
$$

$$
\omega^{i} \wedge: \mathcal{E}_{\lambda}^{n-i} \xrightarrow{\sim} \mathcal{E}_{\lambda}^{n+i} .
$$

Proof. (1) follows from the fact that Δ commutes with $\pi^{p q}$. Since Δ and λ are real, we obtain (2). The proof of (3) is identical to the usual proof of the hard Lefschetz theorem [GH, pp. 118-122]. The key point is that by representation theory, L^{i} maps $V \cap \mathcal{E}^{n-i}$ isomorphically to $V \cap \mathcal{E}^{n+i}$ for any $s l_{2}(\mathbb{C})$-submodule $V \subset \mathcal{E}^{*}$. Applying this to the subspace $V=\mathcal{E}_{\lambda}$, which is an $s l_{2}(\mathbb{C})$-submodule because L, Λ, H commute with Δ, proves (3).

The first part of the theorem can be rephrased as saying that $\mathcal{E}_{\lambda}^{k}$ is a real Hodge structure of weight k. We define the multiplicities $h_{\lambda}^{p q}=\operatorname{dim} \mathcal{E}_{\lambda}^{(p, q)}$ and $b_{\lambda}^{i}=\operatorname{dim} \mathcal{E}_{\lambda}^{i}$. When $\lambda=0$, these are the usual Hodge and Betti numbers. In general, they depend on the metric. These numbers share many properties of ordinary Hodge and Betti numbers:

Corollary 1.2. For each λ,
(a) $b_{\lambda}^{k}=\sum_{p+q=k} h_{\lambda}^{p q}$,
(b) $h_{\lambda}^{p q}=h_{\lambda}^{q p}$,
(c) b_{λ}^{k} is even if k is odd,
(d) $b_{\lambda}^{2 n-k}=b_{\lambda}^{k}$,
(e) if $k<n, b_{\lambda}^{k} \leq b_{\lambda}^{k+2}$,
(f) if $p+q<n, h_{\lambda}^{p q}=h_{\lambda}^{n-p, n-q}$,
(g) if $p+q<n, h_{\lambda}^{p q} \leq h_{\lambda}^{\hat{p}+1, q+1}$.

Proof. The first four statements are immediate. For (e) we use the fact that $\omega \wedge: \mathcal{E}_{\lambda}^{k} \rightarrow \mathcal{E}_{\lambda}^{k+2}$ is an injection by (3). For (f) and (g), we use (3), and observe that $\omega^{i} \wedge-$ shifts the bigrading by (i, i).

The above results can be visualized in terms of the geometry of the "Hodge diamond". When $\lambda>0$, there are some new patterns as well. We start with a warm up.
Lemma 1.3. If λ is a positive eigenvalue of Δ_{0}, then $h_{\lambda}^{0,1} \geq h_{\lambda}^{0,0}=b_{\lambda}^{0}$ and $b_{\lambda}^{1} \geq$ $2 b_{\lambda}^{0}$.

Proof. The map $\bar{\partial}: \mathcal{E}_{\lambda}^{0} \rightarrow \mathcal{E}_{\lambda}^{0,1}$ is injective because the kernel consists of global holomorphic eigenfunctions which are necessarily constant and therefore 0 . This implies the first inequality, which in turn implies the second.

We will give an extension to higher degrees, but first we start with a lemma.
Lemma 1.4. If $\lambda>0$,

$$
\mathcal{E}_{\lambda}^{k}=d \mathcal{E}_{\lambda}^{k-1} \oplus d^{*} \mathcal{E}_{\lambda}^{k+1}
$$

and

$$
\mathcal{E}_{\lambda}^{(p, q)}=\bar{\partial} \mathcal{E}_{\lambda}^{(p, q-1)} \oplus \bar{\partial}^{*} \mathcal{E}_{\lambda}^{(p, q+1)}
$$

Proof. By standard Hodge theory [GH, W], we have the decompositions

$$
\begin{gathered}
\mathcal{E}^{k}=\mathcal{E}_{0} \oplus d \mathcal{E}^{k-1} \oplus d^{*} \mathcal{E}^{k+1}, \\
\mathcal{E}^{k \pm 1}=\bigoplus_{i=1}^{\infty} \mathcal{E}_{\lambda_{i}^{(k+1)}}^{k \pm 1}
\end{gathered}
$$

These can be combined to yield the decomposition

$$
\mathcal{E}^{k}=\mathcal{E}_{0}^{k} \oplus \bigoplus_{i=1}^{\infty} d \mathcal{E}_{\lambda_{i}^{(k-1)}}^{k-1} \oplus \bigoplus_{i=1}^{\infty} d^{*} \mathcal{E}_{\lambda_{i}^{(k+1)}}^{k+1}
$$

Since $d \mathcal{E}_{\lambda}^{k-1}, d^{*} \mathcal{E}_{\lambda}^{k+1} \subset \mathcal{E}_{\lambda}^{k}$, the first part of the lemma

$$
\mathcal{E}_{\lambda}^{k}=d \mathcal{E}_{\lambda}^{k-1} \oplus d^{*} \mathcal{E}_{\lambda}^{k+1}
$$

follows immediately. The proof of the second part is identical.
Theorem 1.5. Suppose that $\lambda>0$.
(a) For all $k, b_{\lambda}^{k} \leq b_{\lambda}^{k-1}+b_{\lambda}^{k+1}$.
(b) If $p+q<n$, then $h_{\lambda}^{p q} \leq h_{\lambda}^{p+1, q}+h_{\lambda}^{p, q+1}$.
(c) If $k<n$, then $b_{\lambda}^{k} \leq b_{\lambda}^{k+1}$.

Proof. The first statement is an immediate consequence of Lemma 1.4 ,
By Lemma 1.4, we have a direct $\operatorname{sum} \mathcal{E}_{\lambda}^{(p, q)}=\mathcal{E}_{\mathrm{im}}^{(p, q)} \oplus \mathcal{E}_{\mathrm{im}}^{(p, q)} \bar{\partial}^{*}, \lambda$. of the $\bar{\partial}$-exact $\mathcal{E}_{\text {im }}^{(p, q)}:=\bar{\partial}, \lambda \mathcal{E}_{\lambda}^{(p, q-1)}$ and $\bar{\partial}$-coexact $\mathcal{E}_{\text {im }}^{(p, q)} \bar{\partial}^{*}, \lambda ;=\bar{\partial}^{*} \mathcal{E}_{\lambda}^{(p, q+1)}$ parts. We denote the dimensions of these spaces by $h_{\mathrm{im}}^{p q} \overline{\bar{\delta}, \lambda}$ and $h_{\mathrm{im}}^{p q} \bar{\partial}^{*}, \lambda$ respectively.

Suppose that $\alpha \in \mathcal{E}_{\operatorname{im}}^{(p, q)} \bar{\partial}^{*}, \lambda ;$ then we can write $\alpha=\bar{\partial}^{*} \beta$. We have $\bar{\partial} \alpha \in \mathcal{E}_{\lambda}^{(p, q+1)}$ because $\bar{\partial}$ and Δ commute. Suppose that $\bar{\partial} \alpha=0$. Then

$$
\alpha=\frac{1}{\lambda} \Delta \alpha=\frac{2}{\lambda}\left(\bar{\partial}^{*} \bar{\partial}+\bar{\partial} \bar{\partial}^{*}\right) \alpha=\frac{2}{\lambda} \bar{\partial} \bar{\partial}^{*} \alpha=\frac{2}{\lambda} \bar{\partial}\left(\bar{\partial}^{*}\right)^{2} \beta .
$$

This is zero, because $\left\langle\left(\bar{\partial}^{*}\right)^{2} \beta, \xi\right\rangle=\left\langle\beta, \bar{\partial}^{2} \xi\right\rangle=0$ for any ξ. Thus the map

$$
\bar{\partial}: \mathcal{E}_{\mathrm{im}}^{(p, q)} \hookrightarrow \mathcal{E}_{\mathrm{im}} \mathrm{im}_{\bar{\partial}, \lambda}^{(p, q+1)}
$$

is injective. Although, we will not need it, it is worth noting that it is also surjective because

Therefore

$$
\begin{equation*}
h_{\mathrm{im}}^{p, q} \bar{\partial}^{*}, \lambda=h_{\mathrm{im} \bar{\partial}, \lambda}^{p, q+1} \tag{4}
\end{equation*}
$$

for all p, q. We now assume that $p+q<n$. We will also establish an inequality

$$
\begin{equation*}
h_{\mathrm{im}}^{p, q} \overline{\bar{\partial}}, \lambda \leq h_{\mathrm{im} \bar{\partial}^{*} \lambda}^{p+1, q} . \tag{5}
\end{equation*}
$$

Let $\alpha=\bar{\partial} \beta \in \mathcal{E}_{\text {im }}^{(p, q)}$ 效 be a nonzero element. The previous theorem shows that $\gamma=\omega \wedge \alpha$ is a nonzero element of \mathcal{E}_{λ}. The form $\bar{\partial}^{*} \gamma \neq 0$, since otherwise

$$
\gamma=\frac{1}{\lambda} \Delta \gamma=\frac{2}{\lambda} \bar{\partial}^{*} \bar{\partial}^{2}(\omega \wedge \beta)=0 .
$$

Thus we have proved that the map

$$
\mathcal{E}_{\mathrm{im} \overline{\bar{\partial}}, \lambda}^{(p, q)} \rightarrow \mathcal{E}_{\mathrm{im}}^{(p+1, q)} \overline{\bar{\partial}}^{*}, \lambda
$$

given by $\alpha \mapsto \bar{\partial}^{*}(\omega \wedge \alpha)$ is injective. Equation (5) is an immediate consequence. Adding (4) and (5) yields

$$
\begin{equation*}
h_{\lambda}^{p q} \leq h_{\mathrm{im} \overline{,}, \lambda}^{p, q+1}+h_{\mathrm{im}}^{p+1, q} \bar{\partial}^{*} \lambda \tag{6}
\end{equation*}
$$

which implies (b). Equation (6) also implies

$$
\left.\begin{array}{rl}
b_{\lambda}^{k} & =h_{\lambda}^{0, k}+h_{\lambda}^{1, k-1}+\ldots \\
& \leq\left(h_{\mathrm{im}}^{0, k+1}, \lambda+h_{\mathrm{im}}^{1, k} \bar{\partial}^{*}, \lambda\right.
\end{array}\right)+\left(h_{\mathrm{im}}^{1, k} \overline{\bar{\rho}}, \lambda+h_{\mathrm{im}}^{2, k-1} \bar{\partial}^{*}, \lambda\right)+\ldots .
$$

By the positive spectrum of an operator, we mean the set of its positive eigenvalues (considered without multiplicity).
Corollary 1.6. The positive spectrum of Δ_{k} is contained in the union of the spectra of Δ_{k-1} and Δ_{k+1}.

Let $\lambda_{1}^{(k)}$ denote the first strictly positive eigenvalue of $\Delta_{k}=\left.\Delta\right|_{\mathcal{E}^{k}}$.
Corollary 1.7. If $k<n$, the positive spectrum of Δ_{k} is contained in the positive spectrum of Δ_{k+1}. Consequently, $\lambda_{1}^{(0)} \geq \lambda_{1}^{(1)} \geq \ldots \geq \lambda_{1}^{(n)}$.

We can show that the positive spectra of Δ_{k} coincide for certain values of k.
Corollary 1.8. The positive spectra of Δ_{n-1}, Δ_{n}, and Δ_{n+1} coincide. In particular, when $n=1$, the positive spectra of all the Laplacians coincide.
Proof. If $\lambda>0$, then the inequalities

$$
\begin{gathered}
b_{\lambda}^{n-1}=b_{\lambda}^{n+1} \\
b_{\lambda}^{n-1} \leq b_{\lambda}^{n} \leq b_{\lambda}^{n-1}+b_{\lambda}^{n+1}=2 b_{\lambda}^{n-1}
\end{gathered}
$$

follow from Theorems 1.1 and 1.5 . These imply the corollary.
The spectra are difficult to calculate in general, although there is at least one case where it is straightforward.
Example 1.9. Let $L \subset \mathbb{C}^{n}$ be a lattice with dual lattice L^{*} with respect to the Euclidean inner product. The spectrum of each Δ_{k} on the flat torus \mathbb{C}^{n} / L is easily calculated to be the same set $\left\{4 \pi^{2}\|v\|^{2} \mid v \in L^{*}\right\}$; cf. [BGM, pp. 146-148].

References

[BGM] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d'une variété riemannienne (French), Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971. MR0282313
[GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley \& Sons], New York, 1978. Pure and Applied Mathematics. MR507725
[G] Pierre Guerini, Prescription du spectre du laplacien de Hodge-de Rham (French, with English and French summaries), Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 2, 270303. MR2061782
[GS] Pierre Guerini and Alessandro Savo, Eigenvalue and gap estimates for the Laplacian acting on p-forms, Trans. Amer. Math. Soc. 356 (2004), no. 1, 319-344. MR2020035
[JSZ] Dmitry Jakobson, Alexander Strohmaier, and Steve Zelditch, On the spectrum of geometric operators on Kähler manifolds, J. Mod. Dyn. 2 (2008), no. 4, 701-718. MR2449142
[T1] Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, J. Math. Soc. Japan 53 (2001), no. 2, 307-320. MR1815136
[T2] Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and p-forms, Ann. Global Anal. Geom. 23 (2003), no. 1, 13-27. MR1952856
[W] R. O. Wells Jr., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 65, Springer-Verlag, New York-Berlin, 1980. MR608414

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

