Lefschetz decompositions for eigenforms on a Kähler manifold
HTML articles powered by AMS MathViewer
- by Donu Arapura
- Proc. Amer. Math. Soc. 146 (2018), 2277-2281
- DOI: https://doi.org/10.1090/proc/14006
- Published electronically: February 8, 2018
- PDF | Request permission
Abstract:
We show that the eigenspaces of the Laplacian $\Delta _k$ on $k$-forms on a compact Kähler manifold carry Hodge and Lefschetz decompositions. Among other consequences, we show that the positive part of the spectrum of $\Delta _k$ lies in the spectrum of $\Delta _{k+1}$ for $k<\dim X$.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Pierre Guerini, Prescription du spectre du laplacien de Hodge-de Rham, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 2, 270–303 (French, with English and French summaries). MR 2061782, DOI 10.1016/j.ansens.2003.04.005
- Pierre Guerini and Alessandro Savo, Eigenvalue and gap estimates for the Laplacian acting on $p$-forms, Trans. Amer. Math. Soc. 356 (2004), no. 1, 319–344. MR 2020035, DOI 10.1090/S0002-9947-03-03336-1
- Dmitry Jakobson, Alexander Strohmaier, and Steve Zelditch, On the spectrum of geometric operators on Kähler manifolds, J. Mod. Dyn. 2 (2008), no. 4, 701–718. MR 2449142, DOI 10.3934/jmd.2008.2.701
- Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, J. Math. Soc. Japan 53 (2001), no. 2, 307–320. MR 1815136, DOI 10.2969/jmsj/05320307
- Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and $p$-forms, Ann. Global Anal. Geom. 23 (2003), no. 1, 13–27. MR 1952856, DOI 10.1023/A:1021294732338
- R. O. Wells Jr., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 65, Springer-Verlag, New York-Berlin, 1980. MR 608414, DOI 10.1007/978-1-4757-3946-6
Bibliographic Information
- Donu Arapura
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 26770
- Received by editor(s): August 9, 2017
- Published electronically: February 8, 2018
- Additional Notes: This research was partially supported by the NSF
- Communicated by: Lei Ni
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2277-2281
- MSC (2010): Primary 58J50; Secondary 14C30
- DOI: https://doi.org/10.1090/proc/14006
- MathSciNet review: 3767377