A fixed point theorem for monotone asymptotically nonexpansive mappings
HTML articles powered by AMS MathViewer
- by Monther Rashed Alfuraidan and Mohamed Amine Khamsi PDF
- Proc. Amer. Math. Soc. 146 (2018), 2451-2456 Request permission
Abstract:
Let $C$ be a nonempty, bounded, closed, and convex subset of a Banach space $X$ and $T: C \rightarrow C$ be a monotone asymptotically nonexpansive mapping. In this paper, we investigate the existence of fixed points of $T$. In particular, we establish an analogue to the original Goebel and Kirk’s fixed point theorem for asymptotically nonexpansive mappings.References
- Mostafa Bachar and Mohamed Amine Khamsi, Fixed points of monotone mappings and application to integral equations, Fixed Point Theory Appl. , posted on (2015), 2015:110, 7. MR 3368216, DOI 10.1186/s13663-015-0362-x
- S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications, Fund. Math. 3(1922), 133-181.
- B. A. Bin Dehaish and M. A. Khamsi, Browder and Göhde fixed point theorem for monotone nonexpansive Mappings, Fixed Point Theory and Applications 2016:20 DOI: 10.1186/s13663-016-0505-8
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Siegfried Carl and Seppo Heikkilä, Fixed point theory in ordered sets and applications, Springer, New York, 2011. From differential and integral equations to game theory. MR 2760654, DOI 10.1007/978-1-4419-7585-0
- Michael Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206–208. MR 291917, DOI 10.1090/S0002-9904-1972-12918-5
- K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174. MR 298500, DOI 10.1090/S0002-9939-1972-0298500-3
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- Jacek Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1359–1373. MR 2367109, DOI 10.1090/S0002-9939-07-09110-1
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Juan J. Nieto and Rosana Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223–239 (2006). MR 2212687, DOI 10.1007/s11083-005-9018-5
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, DOI 10.1090/S0002-9904-1967-11761-0
- André C. M. Ran and Martine C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435–1443. MR 2053350, DOI 10.1090/S0002-9939-03-07220-4
- Mihai Turinici, Fixed points for monotone iteratively local contractions, Demonstratio Math. 19 (1986), no. 1, 171–180. MR 871128
Additional Information
- Monther Rashed Alfuraidan
- Affiliation: Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- MR Author ID: 795781
- ORCID: 0000-0002-3641-290X
- Email: monther@kfupm.edu.sa
- Mohamed Amine Khamsi
- Affiliation: Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas 79968
- MR Author ID: 100900
- ORCID: 0000-0001-6787-7032
- Email: mohamed@utep.edu
- Received by editor(s): June 20, 2016
- Received by editor(s) in revised form: July 15, 2016
- Published electronically: February 28, 2018
- Communicated by: Mourad Ismail
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2451-2456
- MSC (2010): Primary 46B20, 45D05; Secondary 47E10, 34A12
- DOI: https://doi.org/10.1090/proc/13385
- MathSciNet review: 3778148