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EXCEPTIONAL COLLECTIONS ON SOME FAKE QUADRICS

KYOUNG-SEOG LEE AND TIMOFEY SHABALIN

(Communicated by Lev Borisov)

Abstract. We construct exceptional collections of maximal length on four
families of surfaces of general type with pg = q = 0 which are isogenous to
a product of curves. From these constructions we obtain new examples of
quasiphantom categories as their orthogonal complements.

1. Introduction

Derived categories of coherent sheaves are one of the most attractive and mys-
terious invariants of algebraic varieties, and the notion of semiorthogonal decom-
position plays a key role in the study of derived categories of algebraic varieties.
Semiorthogonal decompositions tell us the structure of derived categories, and many
interesting semiorthogonal decompositions of Fano and rational varieties were con-
structed. However, in contrast to the many studies of derived categories of Fano or
rational varieties, we do not know much about the structure of derived categories
of varieties of general type.

One of the easiest ways to construct a semiorthogonal decomposition is to find
an exceptional collection. When a triangulated category has an exceptional collec-
tion we can divide it into the category generated by the exceptional collection and
its orthogonal complement. For a surface with pg = q = 0, every line bundle is
an exceptional object, and we can construct semiorthogonal decompositions using
line bundles. Then we can hope that for some surfaces with pg = q = 0 there are
exceptional collections of maximal length and we can study derived categories of
these surfaces using semiorthogonal decompositions induced from them. Böhning,
Graf von Bothmer and Sosna proved in [4] that there exists an exceptional collec-
tion of maximal length on the classical Godeaux surface. They constructed the first
example of a quasiphantom category as the orthogonal complement of this excep-
tional collection. Motivated by their results there are now lots of studies on derived
categories of surfaces of general type with pg = q = 0. See the papers of Böhning,
Graf von Bothmer, and Sosna [4], Alexeev and Orlov [1], Galkin and Shinder [12],
Böhning, Graf von Bothmer, Katzarkov and Sosna [3], Fakhruddin [10], Galkin,
Katzarkov, Mellit and Shinder [11], Coughlan [8], Keum [14] and the first author
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[15,16] for more details. They constructed categories with vanishing Hochschild ho-
mology groups as orthogonal complements of exceptional collections of line bundles
of maximal length. Some of them are known to have finite Grothendieck groups and
they provide examples of quasiphantom categories. Supported by these examples,
it seems that the following question is now considered by many experts.

Question. Let S be a smooth projective surface of general type with pg = q = 0.
Is there an exceptional collection whose length is equal to the rank of Grothendieck
group of S or the total dimension of H∗(S,C)? Especially can we construct such
an exceptional collection using line bundles on S?

We want to answer the above question for some special surfaces of general type
with pg = q = 0. Bauer, Catanese and Grunewald have classified surfaces of
general type with pg = q = 0 which are quotients of a product of curves by the
free diagonal action of a finite group in [6]. There are 12 families of such surfaces,
and these are called the surfaces isogenous to a higher product of unmixed type.
The rank of Grothendieck group of every such surface is 4, and the total dimension
of cohomology group of every such surface is also 4 [12]. Therefore the maximal
possible length of the exceptional collection on every such surface is 4. For the
4 families of such surfaces with abelian group quotients, exceptional collections of
maximal length were constructed in [12, 15, 16]. In this paper we construct such
collections in four more cases whereG isD4×Z/2, S4, S4×Z/2 and (Z/4×Z/2)�Z/2
(G(16) in the notation of [6]).

Theorem 1.1. Let S = (C×D)/G be a surface isogenous to a higher product with
pg = q = 0, where G is one of D4 × Z/2, S4, S4 × Z/2 and (Z/4 × Z/2) � Z/2.
Then there are exceptional collections of line bundles of maximal length 4 on S,
and the orthogonal complements of these exceptional collections are quasiphantom
categories.

We think that we can generalize this result to any surface isogenous to a higher
product with pg = q = 0. The following conjecture has also appeared in [12].

Conjecture 1.2. Let S be a surface isogenous to a higher product with pg = q = 0.
Then there are exceptional collections of line bundles of maximal length 4 on S.

We recall some basic facts about these surfaces (see [5,21] for more details) and
sketch the idea of the construction. Let S = (C1×C2)/G be one of them. We have
Ci/G ∼= P1, |G| = (g1−1)(g2−1) where gi is the genus of Ci. Since pg = q = 0, the
Chern class map Pic(S) → H2(S,Z) is an isomorphism. It follows from Noether’s
formula that H2(S,Z) has rank 2. Thus up to a finite torsion subgroup Pic(S)
is an unimodular indefinite lattice of rank 2, that is, a hyperbolic plane. Let
pi : C1 × C2 → Ci be the projections and denote by F � G = p∗1(F) ⊗ p∗2(G)
the external tensor product of coherent sheaves F and G on C1 and C2. Let us
denote by O(2, 0) and O(0, 2) the classes of pG∗ p

∗
1(Ω

1
C1

) and pG∗ p
∗
2(Ω

1
C2

) in the lattice

H2(S,Z)/Tors. Then we have O(2, 0)2 = 0, O(0, 2)2 = 0, O(2, 0) · O(0, 2) = 4. We
see that the lattice H2(S,Z)/Tors must be generated by some numerical halves
O(1, 0) and O(0, 1) of canonical classes of curves C1, C2. The Euler characteristic
of a line bundle on S of numerical type O(i, j) is (i− 1)(j − 1).

The category coh(S) of coherent sheaves on S is equivalent to the category of
G-equivariant coherent sheaves on C1 × C2, and we denote the functor

cohG(C1 × C2) → coh(S)



EXCEPTIONAL COLLECTIONS ON SOME FAKE QUADRICS 2301

by pG∗ . Therefore we are going to construct exceptional collections of line bundles
in Db(S) by constructing exceptional collections of G-equivariant line bundles in
Db

G(C1 × C2). Recall the definition of exceptional sequence.

Definition 1.3.
(1) An object E of a triangulated category D is called exceptional if

Homk(E,E) =

{
C, if k = 0,
0, otherwise.

(2) A collection of exceptional objects E1, . . . , En is called exceptional if

Homk(Ei, Ej) = 0

for all i > j and all k.

From the definition it is clear that when L,O is an exceptional collection then
χ(L) should be 0. Therefore we need some numerical halves O(1, 0) and O(0, 1) of
canonical classes of curves C1, C2 to construct an exceptional collection of line bun-
dles. However there are some cases when we cannot give a G-equivariant structure
to the numerical halves of canonical bundles. In these cases we construct equivari-
ant bundles on C1 ×C2 by finding two divisors D1 and D2 on C1 and C2 such that
each of them is not equivariant on the curve Ci, but they have mutually inverse
obstructions and therefore p∗1O(D1)⊗p∗2O(D2) is equivariant on the product. From
now on we will omit pG∗ , p

∗
1 and p∗2 from our notation.

Let us explain how this is possible. For a smooth projective variety X with an
action of a finite group G there is an exact sequence

(1) 0 → Ĝ → PicG(X) → Pic(X)G → H2(G,C∗),

where Ĝ = Hom(G,C∗) is the group of characters of G, PicG(X) is the group of
G-equivariant line bundles on X and Pic(X)G is the group of line bundles whose
classes in the Picard group are invariant under the action of G. The last map in
(1) providing the obstruction to the existence of an equivariant structure on a line
bundle L may be described as follows. Fix L in Pic(X)G. For each g ∈ G pick
some isomorphisms φg : g∗L → L. Then
(2) ηL(g, h) = φg · g∗φh · φ−1

gh

is an automorphism of L, that is, an element of C∗. Therefore ηL is a 2-cocycle in
Z2(G,C∗) and the map Pic(X)G → H2(G,C∗) is given by L �→ ηL.

Let S = (C1 ×C2)/G be surface isogenous to a higher product of unmixed type
with pg = q = 0 and g1 ≤ g2. For G = D4 × Z/2, S4, S4 × Z/2 cases we cannot
give G-equivariant structure to any half of canonical line bundle on C1. What we
can do is to construct G-invariant acyclic line bundle L on C1 which is a numerical
half of the canonical line bundle but not G-equivariant. Then we need to find a
G-invariant line bundle M such that ηL ·ηM = 0 in H2(G,C∗) to make L�M a G-
equivariant acyclic line bundle on C1×C2. The following proposition of Dolgachev
[9] tells us that we can always find such a line bundle.

Proposition 1.4 ([9, Proposition 2.2]). If X is a curve, then the map Pic(X)G →
H2(G,C∗) is surjective.

In fact there are infinitely many such line bundles. Then we show that there are
G-equivariant acyclic line bundles on C2. From Serre duality, the Künneth formula
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and the Riemann-Roch theorem on the curves C1, C2 one obtains the following
lemma.

Lemma 1.5. Suppose that L is a G-invariant acyclic line bundle on C1, M and N
are line bundles on C2 such that M is G-invariant and ηL · ηM = 0 in H2(G,C∗)
and N is acyclic and admits G-equivariant structure on C2. Then the sequence

L� (M⊗N )(χ1), L�M(χ2), O �N (χ3), O
is an exceptional collection on S. Here χi denotes arbitrary characters of G by
which we can twist the equivariant structure.

We will construct exceptional collections of maximal length on S = (C1×C2)/G
by this method when G = D4 × Z/2, S4, S4 × Z/2. When G = G(16) we can find
acyclic G-equivariant line bundles on C1, C2, and the construction becomes much
easier.

2. Invariant line bundles

In this section we recall some results of Beauville [2] about curves with G-action
and invariant line bundles on them which will be extremely useful for our construc-
tion. Let C be a smooth projective curve and G be a finite group acting on C. Let
B be the quotient curve, π : C → B the quotient map. Denote by RC the field of
rational functions on the curve C. From the short exact sequence of G-modules

0 → C
∗ → R∗

C → R∗
C/C

∗ → 0,

we get
0 → C

∗ → R∗
B → (R∗

C/C
∗)G → H1(G,C∗) → 0,

since H1(G,R∗
C) = 0 by Hilbert’s Theorem 90. From the short exact sequence of

G-modules
0 → R∗

C/C
∗ → Div(C) → Pic(C) → 0,

we get the commutative diagram

0 −−−−→ R∗
B/C

∗ −−−−→ Div(B) −−−−→ Pic(B) −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ (R∗

C/C
∗)G −−−−→ Div(C)G −−−−→ Pic(C)G −−−−→ H1(G,R∗

C/C
∗).

If we change the lower exact sequence by

0 → (R∗
C/C

∗)G → Div(C)G → Im → 0,

we still have a commutative diagram and we can apply the snake lemma as follows:

(3)

0 −−−−→ 0 −−−−→ 0 −−−−→ X −−−−→⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ R∗

B/C
∗ −−−−→ Div(B) −−−−→ Pic(B) −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−−→ (R∗
C/C

∗)G −−−−→ Div(C)G −−−−→ Im −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
−−−−→ H1(G,C∗) −−−−→ Y −−−−→ Z −−−−→ 0.
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Sometimes we can compute X,Y, Z explicitly and then the above diagram becomes
very useful. For example when B is isomorphic to P1 we get X = 0.

Lemma 2.1 ([2]). Let C be a curve with involution σ and B be the quotient curve
C/〈σ〉. If the covering π : C → B is unramified, then Y = Z = 0 and X ∼=
H1(G,C∗) ∼= Z/2. If the set R of ramification points of π is nonempty, then X = 0
and the last row is isomorphic to

0 → Z/2 → (Z/2)R → Pic(C)σ/π∗Pic(B) → 0,

where the kernel is generated by (1, . . . , 1).

The next result of Beauville will be very important for our computations. Recall
that a theta characteristic is a nontrivial line bundle whose square is the canonical
line bundle of C.

Lemma 2.2 ([2]). In the situation of the previous lemma, let L be a σ-invariant
theta characteristic on C. There are some L′ ∈ Pic(B) and E ⊂ R such that
L = π∗(L′)(E). Then we also have L = π∗(KB ⊗ L′−1)(R − E). The pushforward
of L splits: π∗(L) = L′ ⊕ (KB ⊗ L′−1) and we have

H0(C,L) = H0(B,L′)⊕H1(B,L′)∗.

3. Case G = D4 × Z/2

The group G has a presentation

〈x, y, z | x4 = y2 = z2 = [x, z] = [y, z] = 1, xy = x−1〉,
where xy = y−1xy, [x, y] = xyx−1y−1.

A covering π : C → P1 with Galois group G can be specified by its ramification
type (mk1

1 , . . . ,mkl

l ), which means that π has ki ramification points of multiplicity
mi and by the tuple of generators (g1, . . . , gn), gi ∈ G, n = k1 + · · · + kl such
that a simple geometric loop around the j-th ramification point on P

1 lifts to the
action of gj on C. We must have g1 . . . gn = 1 and g1, . . . , gn must generate G. Of
course these data do not specify the covering completely because one can move the
ramification points on P1. If p1, . . . , pn ∈ P1 are the ramification points, then we
will denote by Ei the reduced fiber of π over pi.

The covering C1 → P1 has ramification type (23, 4) and the corresponding ele-
ments of G are (z, yz, xy, x). The covering C2 → P1 has ramification type (26) and
the corresponding tuple is (y, x3yz, x2y, x3yz, x2z, x2z). The curve C1 has genus 3
(2g − 2 = 4), C2 has genus 9 (2g − 2 = 16). Divisors E1, E2, E3 on C1 have degree
8 and E4 has degree 4. All divisors Ei on C2 consist of 8 points.

Lemma 3.1. There is a G-invariant theta characteristic L on C1 which has no
sections.

Proof. Consider the mapping π : C1 → C1/〈z〉. The quotient has genus 0, so π is a
hyperelliptic structure on C1. It is ramified in the 8 points of E1. The quotient of
C1 by subgroup 〈x2, xy〉 also has genus 0. The divisor E1 consists of two 〈x2, xy〉-
orbits. Let B1 be one of them. Let also B2 be any full fiber of π. Since the
subgroups 〈x2, xy〉 and 〈z〉 are normal in G, divisors B1 and B2 have G-invariant
classes in the Picard group. Let L = B1−B2 and L = O(L). The canonical class of
C1 is equivalent to E1−2B2 ∼ 2B1−2B2, so L is a theta characteristic. By Lemma
2.2 applied to π we have h0(C1, L) = h0(P1,O(−1)) + h1(P1,O(−1)) = 0. �
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Proposition 1.4 implies the next lemma.

Lemma 3.2. There is a G-invariant line bundle M on C2 such that ηL · ηM = 0.

Now we construct an explicit G-equivariant acyclic theta characteristic on C2.

Lemma 3.3. There is a G-equivariant theta characteristic N on C2 which has no
sections.

Proof. Let N = E1 − E2 + E5 and N = O(N). Quotients of C2 by subgroups
〈xyz, x2, z〉, 〈y, x2, z〉, 〈y, xyz, x2〉 all have genus 0. From these three quotients we
see that E1 ∼ E3, E2 ∼ E4, E5 ∼ E6. It follows that N is a theta characteristic.
Consider the quotient π : C2 → C2/〈x2z〉. We have N = π∗N ′ + E5, where N ′ is
a divisor of degree 0. The curve C2/〈x2z〉 has genus 1. We have 2N ′ ∼ 0 which
is the canonical class of C2/〈x2z〉. There is an induced action of y on C2/〈x2z〉.
Applying Lemma 2.2 first to π, then to the quotient of C2/〈x2z〉 by 〈y〉 we find
h0(C2, N) = 2h0(C2/〈x2z〉, N ′) = 4h0(P1,O(−1)) = 0. �

From the above lemmas we get the following theorem.

Theorem 3.4. Let S = (C1 × C2)/G be a surface isogenous to a higher product
with pg = q = 0 and G = D4 × Z/2. Then there are exceptional collections of line
bundles of maximal length 4 on S.

4. Case G = S4 × Z/2

The covering C1 → P1 has ramification type (2, 4, 6). The corresponding tuple
is ((12), 0), ((1234), 1), ((432), 1). The covering C2 → P

1 has ramification type (26),
and the tuple is ((12)(34), 1), ((12), 1), ((34), 1), ((14)(23), 1), ((23), 1), ((14), 1).

Lemma 4.1. There is a G-invariant acyclic theta characteristic L on C1.

Proof. Note that the curve C1 is hyperelliptic and the quotient of C1 by the action
of the element (1, 1) of order two in G is isomorphic to P1. We denote by π :
C1 → P

1 the quotient morphism. Consider the Klein subgroup V4 = V4 × {0} =
{1, ((12)(34), 0), ((13)(24), 0), ((14)(23), 0)} ≤ S4 × Z2. The quotient C1/V4 has
genus 0. The group V4 acts freely on E3, so E3 consists of two free V4-orbits, which
are equivalent to each other. Let W be one of them. Then O(W ) is a G-invariant
line bundle. Let L = π∗O(−1)⊗O(W ). Note that the ramification points of π are
precisely E3. Looking at the morphism π we see that π∗O(−2)(E3) is a canonical
bundle on C1, but E3 ∼ 2W , so L is a theta characteristic on C1. It is G-invariant
since G must preserve the hyperelliptic structure. From Lemma 2.2 applied to the
hyperelliptic involution we get h0(C1,L) = h0(P1,O(−1))+h1(P1,O(−1)) = 0. �

The next lemma follows from Proposition 1.4.

Lemma 4.2. There is a G-invariant line bundle M on C2 such that ηL · ηM = 0.

Then we construct an explicit G-equivariant acyclic theta characteristic on C2.

Lemma 4.3. There is a G-equivariant acyclic theta characteristic N on C2.

Proof. Note that the elements ((12)(34), 1), ((13)(24), 1), ((14)(23), 1) generate the
subgroup V4 × Z2 isomorphic to Z

3
2. Consider the system of quotients C2 → C ′

2 →
C ′′

2 → C ′′′
2 , where C ′

2 is the quotient by the action of ((12)(34), 1), C ′′
2 by the induced

action of ((13)(24), 1) and C ′′′
2 by ((14)(23), 1). We divide E1 into three parts
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F1, F2, F3 according to their stabilizers ((12)(34), 1), ((13)(24), 1) or ((14)(23), 1)
and analogously E4 into F4, F5, F6. The ramification points of the morphism C2 →
C ′

2 are F1 ∪ F4, the ramification of C ′
2 → C ′′

2 is F ′
2 ∪ F ′

5, where F ′
i is the image of

Fi on C ′
2 (without multiplicities) and the ramification of C ′′

2 → C ′′′
2 is F ′′

3 ∪ F ′′
6 .

The curve C ′′′
2 is elliptic, so its canonical divisor KC′′′

2
is zero. Thus we see that

KC′′
2
= F ′′

3 + F ′′
6 , KC′

2
= F ′

2 + F ′
3 + F ′

5 + F ′
6 and KC2

= F1 + · · ·+ F6 = E1 + E4.
The element ((14), 1) stabilizes the subgroup generated by ((12)(34), 1),

((13)(24), 1). Therefore it acts on the curve C ′′
2 . The quotient by this action is

P1 and F ′′
3 , F

′′
6 are its free orbits. Therefore F ′′

3 ∼ F ′′
6 and F ′

3 ∼ F ′
6, F3 ∼ F6.

Analogously F ′
2 ∼ F ′

5 and so on.
Let N = E1 + E2 − E3, N ′ = F ′

2 + F ′
3 + E′

2 − E′
3, N ′′ = F ′′

3 + E′′
2 − E′′

3 .
From the natural map C ′′′

2 → C2/G we get 2E′′′
2 ∼ 2E′′′

3 . Therefore N,N ′, N ′′ are
theta characteristics on the corresponding curves. From Beauville’s lemma applied
repeatedly we get h0(C2, N) = 2h0(C ′

2, N
′) = 4h0(C ′′

2 , N
′′).

Now consider again the quotient C ′′
2 → P1 by the action of ((14), 1). Applying

Beauville’s lemma to it we find h0(C ′′
2 , N

′′) = 2h0(P1,O(−1)) = 0. �

From the above lemmas we get the following theorem.

Theorem 4.4. Let S = (C1 × C2)/G be a surface isogenous to a higher product
with pg = q = 0 and G = S4 × Z/2. Then there are exceptional collections of line
bundles of maximal length 4 on S.

5. Case G = S4

The covering C1 → P
1 has ramification type (3, 42). The corresponding tuple is

((123), (1234), (1243)). The covering C2 → P1 has ramification type (26) and the
tuple is ((12), (12), (23), (23), (34), (34)). The following lemma was stated in [21].
We give a proof as follows.

Lemma 5.1. Let us denote by C ′
1 the curve C1 from the previous section with its

S4×Z/2-action. Consider the subgroup S4 embedded into S4×Z/2 by the mapping
(id, sign). We claim that the curve C ′

1 with the action of this subgroup is isomorphic
to C1 with its S4-action.

Proof. Consider the quotient C ′
1 → C ′

1/S4 and its ramification. There is a map
C ′

1/S4 → C ′
1/(S4 × Z/2) which is a twofold covering of P1 by P1, and we want

to choose coordinates in such a way that the mapping will be given by z �→ z2.
Suppose that the covering C ′

1 → C ′
1/(S4×Z/2) ∼= P1 is ramified over points 0, 1,∞

and the loop around 0 corresponds to the action of ((12), 0) on the covering and
the loops around 1 and ∞ correspond to ((1234), 1), ((432), 1). Choose −1 as a
base point on the quotient. The covering C ′

1 is specified by the map

π1(P
1 \ {0, 1,∞},−1) = 〈t0, t1, t∞ | t0t1t∞ = 1〉 → S4 × Z/2,

given by

t0 �→ ((12), 0), t1 �→ ((1234), 1), t∞ �→ ((432), 1).

There are four points 0, 1,−1,∞ on C ′
1/S4 above 0, 1,∞ on C ′

1/(S4 ×Z/2). We
want to compute the composite map

π1(P
1 \ {0,±1,∞}, i) → π1(P

1 \ {0, 1,∞},−1) → S4 × Z/2,
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check that its image lies in S4 ≤ S4 ×Z/2 that loop around one of the points maps
to the trivial element, so the ramification is actually in the three points, and finally
check that the map gives our covering C1.

If we choose the generators of

π1(P
1 \ {0,±1,∞}, i) = 〈s1, s−1, s0, s∞ | s1s−1s0s∞ = 1〉

as follows:

i

−1 0 1

∞

• • •
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
�

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

��
��

��

��
��
��
��
��
��
��
��
��
��
��
��
��
�

		
		
		
		
		
		
		
		
		
		
		
		
		
		

�� �� ��

��

(these are loops around 1,−1, 0,∞) and generators t0, t1, t∞ as follows:

−1

0 1

∞

• �� • ��














 ���������������

��
���

���
���

���
���









then we can just draw the images of s1, . . . , s∞ under the map z �→ z2 and then
write them as combinations of t0, t1. We obtain that the homomorphism

π1(P
1 \ {0,±1,∞}, i) → π1(P

1 \ {0, 1,∞},−1)

is given by

s1 �→ t1, s−1 �→ t0t1t
−1
0 , s0 �→ t20, s∞ �→ t−1

0 t−1
1 t−1

0 t−1
1 .

So the composition

π1(P
1 \ {0,±1,∞}, i) → π1(P

1 \ {0, 1,∞},−1) → S4 × Z/2

is given by

s1 �→ ((1234), 1), s−1 �→ ((1342), 1), s0 �→ (1, 0), s∞ �→ ((134), 0).

We see that it factors through S4 ≤ S4 × Z/2 and that s0 is mapped to a trivial
element, so C ′

1 → C ′
1/S4 is ramified only over ±1,∞. The group π1(P

1 \ {±1,∞})
can be represented as

〈s∞, s1, s−1 | s∞s1s−1 = 1〉



EXCEPTIONAL COLLECTIONS ON SOME FAKE QUADRICS 2307

and these three generators map to (134), (1234), (1342). If we conjugate this se-
quence by (13)(24), we get (123), (1234), (1243). Therefore, the covering C ′

1 →
C ′

1/S4 is isomorphic to C1 → C1/S4 with S4-action. �

Lemma 5.2. There is a G-invariant acyclic theta characteristic L on C1.

Proof. Indeed, we can use the same L as in Lemma 4.1. �

Proposition 1.4 implies the next lemma.

Lemma 5.3. There is a G-invariant line bundle M on C2 such that ηL · ηM = 0.

Then we prove that there is a G-equivariant acyclic theta characteristic on C2.

Lemma 5.4. There is a G-equivariant acyclic theta characteristic N on C2.

Proof. We let N = Ei + Ej − Ek for i, j, k all different and N = O(N). We will
prove that for some choices of i, j, k such N is acyclic, but we can’t say for which
ones precisely.

Note that N has degree 12, so we only have to check that N has no regular
sections. The subgroup A4 acts freely on C2, the quotient C2/A4 has genus 2, and
the morphism C2/A4 → C2/S4 has 6 ramification points E′

1, . . . , E
′
6, where E

′
i is the

image of Ei on the quotient C2/A4. We have E1+E2+E3 ∼ E4+E5+E6, and the
S4 acts by a sign character on the function with divisor E1+E2+E3−E4−E5−E6.
All relations between divisors Ei follow from this one and 2Ei ∼ 2Ej since G must
act via character on a function giving such relation. Now it is not hard to see that
possible choices of i, j, k give 10 different classes in Pic(C2). It follows from these
relations that N is a theta characteristic.

Step 1. There are no 1-dimensional subrepresentations in H0(C2, N).

The subgroup A4 must act trivially on such a subrepresentation, so if it exists,
then we must have Ei + Ej ∼ Ek + El. This never holds when i, j, k are different.

Step 2. The dimension of H0(C2, N) is 0, 2 or 4.

We apply Beauville’s lemma to the quotient C2 → C2/(12). We have h0(C2, N) =
h0(A)+h1(A) = 2h0(A) whereA is a line bundle of degree 3 on the quotient C2/(12).
By Clifford’s theorem h0(A) ≤ 2.

Step 3. There are i, j, k such that N has no regular sections.

From previous steps we know that H0(C2, N) is a sum of 2-dimensional irre-
ducible representations of S4. Let W be one of them. Then W comes from an
irreducible representation of S3 via the map S4 → S4/V4

∼= S3. There is a ba-
sis φ1, φ2 of W such that A3 ≤ S3 acts on each φi by a character, and elements
not in A3 exchange φ1 and φ2, also multiplying them by some constant. We have
E1 +E2 −E3 + (φ1) = F1 and E1 +E2 −E3 + (φ2) = F2 where F1 and F2 are A4-
invariant divisors of degree 12. Elements not in A4 exchange F1 and F2. We denote
by E′

i and F ′
i images of Ei and Fi on the quotient C2/A4 (without multiplicities).

Then E′
i and F ′

i are single points on C2/A4. Note that F ′
1, F

′
2 are not equal to any

E′
i. We have σ(F ′

1) = F ′
2, where σ is the nontrivial automorphism of the covering

C2/A4 → C2/S4.
We want to prove that there are no more than 2 different N ’s of the form

Ei +Ej −Ek which have sections. Since the morphism C2 → C2/A4 is unramified,
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from the diagram (3) we see that the kernel X of the map Pic(C2/A4) → Pic(C2)
is isomorphic to H1(A4,C

×) ∼= Z/3. Suppose that N(i, j, k) = Ei + Ej − Ek and
different N(l,m, n) have sections, and we have N(i, j, k) ∼ F1 ∼ F2, N(l,m, n) ∼
F3 ∼ F4, where σ(F1) = F2, σ(F3) = F4, and each Fi is a pullback of a point
on C2/A4. Note that F ′

1 is not equal to F ′
3 or F ′

4, as otherwise we would have
N(i, j, k) ∼ N(l,m, n). Divisors F ′

1 −F ′
2 and F ′

3 −F ′
4 are nontrivial elements of X.

Since X ∼= Z/3, we have either F ′
1−F ′

2 ∼ F ′
3−F ′

4 or 2(F ′
1−F ′

2) ∼ F ′
3−F ′

4. The first
variant is impossible, because then the divisor F ′

1 + F ′
4 has at least 2-dimensional

sections, but such a divisor is unique, so it must be equivalent to F ′
1 +F ′

2, which is
not true. There can’t be a third pair F ′

5, F
′
6 because then F ′

5−F ′
6 must be equivalent

to one of F ′
1 − F ′

2, F
′
3 − F ′

4. Therefore, there are not more than 2 N ’s which have
sections, so acyclic N exists. �

From the above lemmas we get the following theorem.

Theorem 5.5. Let S = (C1 × C2)/G be a surface isogenous to a higher product
with pg = q = 0 and G = S4. Then there are exceptional collections of line bundles
of maximal length 4 on S.

6. Case G = (Z/4× Z/2)� Z/2

The group G has a presentation

〈x, y, z | x4 = y2 = z2 = [x, y] = [y, z] = 1, xz = xy〉.
Both coverings C1, C2 → P1 have ramification type (22, 42). The corresponding
tuples are (z, z, x, x−1) for C1 and (x2yz, x2yz, xyz, x3z) for C2. Both curves C1

and C2 have genus 5 (2g − 2 = 8). The reduced fibers E1, E2 consist of 8 points
each and E3, E4 consist of 4 points on both curves. Now we construct explicit
G-equivariant acyclic theta characteristics on C1 and C2.

Lemma 6.1. There is an acyclic G-equivariant theta characteristic L on C1.

Proof. Let L = E1−E3 and L = O(L). Looking at the quotients C1/〈x〉, C1/〈y, z〉
we find E1 ∼ E2, E3 ∼ E4. It follows that L is a theta characteristic. Consider
the quotient C1 → C1/〈z〉. From Lemma 2.2 we have h0(L) = h0(L′) + h1(L′)
where L′ is a divisor of degree 0 on the curve C1/〈z〉 of genus 1. One checks that
L′ is again a theta characteristic. From the quotient C1/〈z〉 → C1/〈x2, z〉 we find
h0(L) = 2h0(L′) = 4h0(P1,O(−1)) = 0. �
Lemma 6.2. There is an acyclic G-equivariant line bundle N on C2.

Proof. The curve C2 is abstractly the same as C1 (lies in the same family), but the
action of G on it is twisted by an automorphism. Namely, consider the automor-
phism φ : G → G given by

x �→ xyz,

y �→ y,

z �→ x2yz.

Then the curve C2 is one of the possible curves C1 with the G-action given by
g · x = φ−1(g)x where on the right hand side we consider the action on C1. Thus if
we letN = O(E1−E3) on C2, thenN has no regular sections and is equivariant. �

From the above lemmas we get the following theorem.
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Theorem 6.3. Let S = (C1 × C2)/G be a surface isogenous to a higher product
with pg = q = 0 and G = (Z/4×Z/2)�Z/2. Then there are exceptional collections
of line bundles of maximal length 4 on S.

7. Appendix: Explicit construction in the case G = D4 × Z/2

In this section we give explicit construction of the line bundle M on the curve
C2 in the case G = D4 × Z/2 (see section 3). We compute obstructions to the
existence of the equivariant structure on line bundles L and M and prove that
they are inverse to each other, so the bundle L � M on the product C1 × C2 is
equivariant. The next lemma is elementary.

Lemma 7.1. Let C be a hyperelliptic curve of genus g. The twofold covering π :
C → P

1 has 2g+2 ramification points. Let us label them arbitrarily as x1, . . . , xg+1,
y1, . . . , yg+1. Then there is a unique rational function (up to constant) f on C
which has a simple zero in each xi, simple pole in each yi and for such f we have
σ∗f = −f where σ is the nontrivial automorphism of the covering C → P1.

Proof. Let D = −x1 − · · · − xg+1 + y1 + · · ·+ yg+1 be a divisor on C. By the Serre
duality, we have h1(C,O(D)) = h0(C,O(K −D)) = h0(C, π∗(OP1(−2))⊗O(2x1 +
· · · + 2xg+1)) = h0(C, π∗OP1(g − 1)) = h0(P1,OP1(g − 1)) + h0(P1,OP1(−2)) = g.
From the Riemann-Roch formula, we see that h0(C,O(D))− h1(C,O(D)) = 1− g
and h0(C,O(D)) = 1, h1(C,O(D)) = g. Therefore there is a unique (up to constant)
rational function f on C which has a simple zero in each xi and simple pole in each
yi. Moreover we can write f explicitly and we see that f2 is a rational function on
P1, but f is not a rational function on P1. Therefore we have σ∗f = −f where σ is
the nontrivial automorphism of the covering C → P

1. �
The group G has a presentation

〈x, y, z | x4 = y2 = z2 = [x, z] = [y, z] = 1, xy = x−1〉,
where xy = y−1xy, [x, y] = xyx−1y−1. We say that an element g ∈ G is written
in standard form if g = xkylzm, where 0 ≤ k ≤ 3, 0 ≤ l,m ≤ 1. Each element of
G has the unique standard form. One can show that H2(G,C∗) ∼= (Z/2)2 (see [17]
for more details).

Now we compute the obstruction of L. Recall that when we fix an isomorphism
φg : g∗L → L for each g ∈ G, the obstruction can be computed via

(4) ηL(g, h) = φg · g∗φh · φ−1
gh

where g, h are elements of G.

Lemma 7.2. The line bundle L on C1 has obstruction

ηL(x
kylzm, xk′

yl
′
zm

′
) = (−1)m(k′+l′) · i−lk′

for elements of G in the standard form (here i =
√
−1).

Proof. Recall from section 3 that L = O(B1 − B2), where B1 is one of 〈x2, xy〉-
orbits in E1 and B2 is any free 〈z〉-orbit. We will compute obstructions for B1 and
B2.

Consider the covering q : C1 → C ′
1 = C1/〈x2, xy〉. The curve C ′

1 has genus 0.
The image of E1 on C ′

1 is two points P, xP . Let B1 = q∗P . The divisor B1 has
degree 4. The G-orbit of divisor B1 consists of 2 points: B1 and xB1 = q∗(xP ). Let
f ′ be a rational function on C ′

1 with divisor xP − P and f = q∗f ′ be its pullback
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to C1. The quotient map C ′
1 → C ′

1/〈z〉 is ramified in 2 points P, xP . By Lemma
7.1 we have z∗f

′ = −f ′. The function f is 〈x2, xy〉-invariant since it comes from
C ′

1. The function f has divisor xB1 − B1, and x∗f has inverse divisor B1 − xB1.
Then for the right choice of a constant we have x∗f = 1

f , y∗f = 1
f , z∗f = −f . The

divisor B1 is invariant under the action of 〈x2, xy, z〉, and we can put φg = 1 if
g ∈ 〈x2, xy, z〉 and φg = f if g /∈ 〈x2, xy, z〉. Then we have

ηB1
(xkylzm, xk′

yl
′
zm

′
) = (−1)m(k′+l′).

Consider the covering q : C1 → C ′
1 = C1/〈z〉. The curve C ′

1 has genus 0. The image
of E2 on C ′

1 consists of 4 points: two of them have stabilizer 〈y〉, the other two
have 〈x2y〉. Let P be one of the points which is stabilized by y and let B2 = q∗P .
It is a divisor of degree 2. There is a function f ′ on C ′

1 with divisor xP − P ,
and its pullback f = q∗f ′ has divisor xB2 − B2. The functions xk

∗f have divisors
xk+1B2 − xkB2. The function f · x∗f · . . . · xk−1

∗ f has divisor xkB2 − B2. The
function f · x∗f · x2

∗f · x3
∗f has trivial divisor since x4 = 1. Thus multiplying f by

a constant we can assume that

(5) f · x∗f · x2
∗f · x3

∗f = 1.

The divisor B2 has an orbit of order 4 under the action of G; it consists of
B2, . . . , x

3B2. We have yB2 = zB2 = B2. Then for the divisor B2 we can put
φxkylzm = φxk , where φxk = f · x∗f · . . . · xk−1

∗ f (by (5) it depends only on k

mod 4). The divisor of the function f ′ · x∗f
′ is x2P − P , but P and x2P are the

only ramification points of the morphism C ′
1 → C ′

1/〈y〉. Therefore by Lemma 7.1
we have y∗(f

′ · x∗f
′) = −f ′ · x∗f

′. The divisor of y∗f is y(xB2 −B2) = x3B2 −B2

and x−1
∗ f has divisor B2 − x3B2, so we have

y∗f =
C

x−1
∗ f

for some constant C and

y∗(f · x∗f) = y∗f · x−1
∗ y∗f =

C

x2
∗f

· C

x3
∗f

= C2f · x∗f.

Thus C2 = −1. Changing f to if if needed we can assume that C = i. Note that
such a change preserves (5). Now a simple calculation gives the cocycle for B2:

ηB2
(xkylzm, xk′

yl
′
zm

′
) = ilk

′
.

It remains to add two obstructions to finish the proof of the lemma. �

Then we construct M, which gives us an explicit construction of exceptional
collections.

Lemma 7.3. There is a G-invariant line bundle M of degree zero on C2 with
obstruction inverse to ηL.

Proof. We will construct divisors A1, A2 on C2 with G-invariant classes in the
Picard group with obstructions ηA1

= (−1)mk′
and ηA2

= il(k
′+2m′). Consider the

covering q : C2 → C ′
2 = C2/H, where H = 〈y, x2y〉. In each of the fibers E1, E3

there are 4 points with stabilizer 〈y〉 and 4 points with stabilizer 〈x2y〉. Thus the
curve C ′

2 has genus 1. The subgroup H is normal in G, and there is an action of
G/H on C ′

2. Each of E5, E6 consists of two free H-orbits and is mapped to two
points on C ′

2. Let us denote by P a point in the image of E5 and by Q a point in
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the image of E6. The image of E5 on C ′
2 is {P, xP} because P is stabilized by H

and x2z, so xP is a different point in the image of E5. The image of E6 is {Q, xQ}.
Let the divisor A1 on C2 be equal to q∗(P −Q). It has degree 0.

We claim that the line bundle O(A1) lies in the Pic(C2)
G. We need to find iso-

morphisms g∗O(A1) → O(A1) for each g ∈ G, or in other words, rational functions
φg which have divisors gA1 − A1. The divisor A1 is invariant under the action of
the subgroup 〈x2, y, z〉 = 〈H,x2z〉. There are only two elements in the G-orbit of
A1: A1 and xA1. So we only need to find a function on C2 with divisor xA1 −A1.
Consider the covering C ′

2 → C ′′
2 = C2/〈x, x2y, x2z〉. Then C ′′

2 has genus 0, and
C ′

2 → C ′′
2 is the covering of degree two ramified in the points P, xP,Q, xQ.

By Lemma 7.1 there is a function f ′ on C ′
2 with divisor P − xP − Q + xQ.

We denote its pullback to C2 by f . The divisor of f on C2 is xA1 − A1. With
the right choice of the multiplicative constant G acts on f in the following way:
x∗f = 1

f , y∗f = f , z∗f = −f . Now we can put φg = 1 if g ∈ 〈x2, y, z〉 and φg = f

if g /∈ 〈x2, y, z〉. We see that O(A1) lies in the invariant part of the Picard group.
Computing the obstruction by the formula (2) we see that it is equal to

ηA1
(xkylzm, xk′

yl
′
zm

′
) = (−1)mk′

.

Now we will construct another divisor with G-invariant class on C2. Since we will
not need any more details about the construction of A1, we will reuse the notation
P,Q,C, etc., for new objects. Consider the covering q : C2 → C ′

2 = C2/〈x2z〉. The
group G/〈x2z〉 acts on C ′

2. Each of E1, E3 is mapped to 4 points on C ′
2. In both

cases two of the points are stabilized by y on C ′
2 and the other two by x2y. Let P

be one of the points in the image of E1 stabilized by y, and Q be such a point in the
image of E3. Then the 4 points in the image of E1 are P, xP, x2P, x3P , the points
P and x2P are stabilized by y and xP, x3P are exchanged by y and stabilized by
x2y. The same is true about E3 and points xiQ. Let A′

2 be the divisor P − Q on
C ′

2 and A2 = q∗A′
2. Both divisors have degree 0. As in the case of B2, the function

f ′ · x∗f
′ on C ′

2 has simple zeros or poles in all the points stabilized by y and only
in them; therefore y∗(f · x∗f) = −f · x∗f . Analogously we have

y∗f =
C

x−1
∗ f

and we can assume C = i. The only difference is that now φxkylzm = φxk±2m ,

because we took the quotient by 〈x2z〉, not by 〈z〉. We get

ηB2
(xkylzm, xk′

yl
′
zm

′
) = il(k

′+2m′).

If we add the obstructions for line bundles L and M we will get

η(xkylzm, xk′
yl

′
zm

′
) = (−1)mk′ · il(k′+2m′) · (−1)mk′+ml′ · i−lk′

= (−1)ml′+lm′
,

and this cocycle is cohomologous to zero because it is the differential of the 1-
cochain β : G → C∗ such that β(xkylzm) = −1 if both l and m are odd and β = 1
otherwise. �
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