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Abstract. Using iterates of the Adams self map v41 : Σ8S/2 −→ S/2 one can
construct infinite families of elements in the stable homotopy groups of spheres,
the v1-periodic elements of order 2. In this paper we work motivically over
C and construct a non-nilpotent self map w4

1 : Σ20,12S/η −→ S/η. We then
construct some infinite families of elements in the homotopy of the motivic
sphere spectrum, w1-periodic elements killed by η.

1. Introduction

Calculating stable homotopy groups of spheres has been an active field of research
for decades now. Their structure has been better understood as a consequence of
chromatic homotopy theory. On the other hand, motivic homotopy theory is a
relatively new field of research. The stable motivic homotopy category contains the
spectra of topology and the schemes of algebraic geometry. It is an enrichment of
the stable homotopy category. Even though the homotopy of the motivic sphere
spectrum is strictly more complicated than that of the classical sphere spectrum, the
motivic perspective provides insight into the classical problem. This is beautifully
demonstrated in [9–11], where Dan Isaksen uses motivic calculations to correct and
improve upon the classical calculations that came before. This paper observes that
chromatic ideas can also be used in the stable motivic homotopy category and,
moreover, that the story is likely to be a richer one.

The chromatic approach to computing the homotopy of a finite 2-local complex
X is recursive.

(1) Find a non-nilpotent self map f : X −→ Σ−dX and compute f−1π∗(X).
(2) Attack the problem of computing the f -torsion elements in π∗(X) by re-

placing X with X/f and going back to step 1.

Before [4] and [7] it was not known that one could always construct the requisite self
maps. However, in [1] Adams constructed a non-nilpotent map v41 : S/2 → Σ−8S/2,
and this gave the first hint that the above procedure is, in fact, implementable. One
might say that Adams’ work gave birth to chromatic homotopy theory.
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The power of Adams’ self map is that it gives rise to infinite families in the stable
homotopy groups of spheres. Let’s recall how one obtains such families. We have
elements of order 2,

η ∈ π1(S
0), η2 ∈ π2(S

0), η3 ∈ π3(S
0), 8σ ∈ π7(S

0), ε ∈ π8(S
0), and εη ∈ π9(S

0),

which lift to elements of π∗(S/2). By composing with the maps

S/2
(v4

1)
n

�� Σ−8nS/2
pinch �� S1−8n

we obtain families of elements in the homotopy groups of spheres, the v1-periodic
elements of π∗(S

0) of order 2.
The nilpotence theorem [4] says that non-nilpotent self maps are detected by

the Brown-Peterson spectrum BP in the sense that they induce non-zero ho-
momorphisms in BP -homology. Motivically over C at the prime 2, the motivic
Brown-Peterson spectrum does not enjoy the same property: there is an element
η ∈ π1,1(S

0,0) which is non-nilpotent and yet BP∗,∗(η) = 0. Although, from the
classical perspective, this non-nilpotent map is unexpected, we can still follow the al-
gorithm with f taken to be η, and it suggests that we try to compute η−1π∗,∗(S

0,0).
This computation was carried out in [2], and the description is very simple:

η−1π∗,∗(S
0,0) = F2[η

±1, σ, μ9]/(ησ
2).

Here, η ∈ π1,1(S
0,0) and σ ∈ π7,4(S

0,0) are motivic Hopf invariant one elements,
classes that exist over any ground field before η is inverted [5, 17]. As long as we
work over C with the 2-completed motivic sphere, μ9 exists before η is inverted: it
can be described by the Toda bracket 〈8σ, 2, η〉 ∈ π9,5(S

0,0).
The algorithm then suggests that we try to find a non-nilpotent self map of S/η.

The main result of this paper is that such a self map exists (Proposition 3.5 and
Theorem 3.6),

w4
1 : S/η −→ Σ−20,−12S/η,

and we use this map to construct six infinite families in the homotopy groups of the
2-completed motivic sphere spectrum over C (Theorem 3.14). The construction of
the infinite families is parallel to the story we recalled above. We have elements
killed by η (see [11, p. 95, Table 1] and [10, p. 4]):

ν ∈ π3,2(S
0,0), ν2 ∈ π6,4(S

0,0), ν3 ∈ π9,6(S
0,0), η2η4 ∈ π18,11(S

0,0),

σ ∈ π19,11(S
0,0), and σν ∈ π22,13(S

0,0),

which lift to elements of π∗,∗(S/η). By composing with the maps

S/η
(w4

1)
n

�� Σ−20n,−12nS/η
pinch �� S2−20n,1−12n

we obtain families of elements in the homotopy groups of the motivic sphere spec-
trum:

gn(ν) ∈ π3+20n,2+12n(S
0,0), gn(ν2) ∈ π6+20n,4+12n(S

0,0),

gn(ν3) ∈ π9+20n,6+12n(S
0,0), gn(η2η4) ∈ π18+20n,11+12n(S

0,0),

gn(σ) ∈ π19+20n,11+12n(S
0,0), gn(σν) ∈ π22+20n,13+12n(S

0,0).

These are w1-periodic elements of π∗,∗(S
0,0) killed by η. Here, we have used the

letter g in honor of the element with the same name in the May spectral sequence
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(see [11, p. 97, Table 4]). The d4-differential that g supports inspired the construc-
tion of w4

1.
We emphasize here that it is not automatic that these composites are non-trivial

and we have to detect this somehow. This should not be unfamiliar. The driving
force behind [16] was to detect the non-triviality of the classical γ-family. Our
tool for detection is the motivic Adams-Novikov spectral sequence. The homo-
topy classes above are detected by permanent cycles which, if non-zero, cannot be
boundaries for degree reasons. We are then left with showing that these elements
are non-zero on the E2-page and we do this by mapping to the classical Adams
E2-page.

One could try to continue with the algorithm and attempt to compute
w−1

1 π∗,∗(S/η). It is likely that such a calculation would be at least as difficult

as Mahowald’s classical computation of v−1
1 π∗(S/2), [12, 13, 15]. We could also try

to find a self map of S/(η, w4
1). It is likely that finding a minimal self map would

be at least as difficult as Behrens, Hill, Hopkins, and Mahowald’s work in [3].
At this point we explain where our intuition about these self maps comes from.

In [2] we make use of an algebraic Novikov spectral for computing the E2-page
of the classical Adams-Novikov spectral sequence. Its E2-page is H∗(P ;Q). Here
P = F2[ξ

2
1 , ξ

2
2 , . . .] is the Hopf subalgebra of squares in the dual Steenrod algebra

A, and Q is the associated graded of BP∗ under a filtration. In some sense, Q
contains the classical chromatic story. We speculate that a new chromatic motivic
story is contained in P . In [2] we inverted the element h0 = {[ξ21 ]} to compute
the α1-localized Adams-Novikov E2-page. Using the close relationship between the
classical Adams-Novikov spectral sequence and its motivic analog [8] this enabled
our calculation of η−1π∗,∗(S

0,0). Since η corresponds to ξ21 , Haynes Miller suggested
that there may be other non-nilpotent self maps corresponding to ξ22 , ξ

2
3 , . . . ∈ P .

Informally, we call a self map corresponding to ξ2n+1, wn. w1 would have motivic
degree (5, 3), and w2 would have motivic degree (13, 7). It is not luck that Adams
found v41 and we find w4

1. Since we have a self map v322 [3], one might guess that
we also have a self map w32

2 .
The results of this paper have already led to interesting questions. Adams showed

that his map v41 is non-nilpotent by proving that it induces an isomorphism on K-
theory. In [4] and [7] the story was developed further, and the definition of a vn-self
map was given in terms of the Morava K-theories. Due to the delay in publication
of this paper, we are already aware of the work of Bogdan Gheorghe [6], in which
he gives the appropriate definitions of wn-periodicity using K(wn)-theories.

The construction of the self map w4
1 is not difficult; it is similar to the construc-

tion of Adams’ self map. Adams’ map has the property that the composite

S7 �� Σ7S/2
v4
1 �� Σ−1S/2

pinch �� S0

is 8σ. We construct w4
1 so that η2η4 can be factored as

S18,11 �� Σ18,11S/η
w4

1 �� Σ−2,−1S/η
pinch �� S0,0.



2714 MICHAEL J. ANDREWS

2. The motivic Adams-Novikov spectral sequence

and the detection maps

Working motivically requires specifying a ground field; for us, this is always taken
to be C. Throughout the paper all spectra are assumed to be 2-complete. Our
main calculational tool is the motivic Adams-Novikov spectral sequence (MANSS).
We need it for the spectra S0,0, S/η, and End(S/η), that is, the motivic sphere
spectrum, the cofiber of η : S1,1 −→ S0,0, and the endomorphism spectrum of S/η.

The motivic Adams-Novikov spectral sequence [8] is a convergent spectral se-
quence of the form

Hs,t,w(BP∗BP ;BP∗(X))
s

=⇒ πt−s,w(X).

Here, BP is the motivic Brown-Peterson spectrum. We write BP∗ instead of
BP∗,∗ in order to save space, and H∗(BP∗BP ;BP∗(X)) is the cohomology of the
Hopf algebroid BP∗BP with coefficients in BP∗(X), which is the same thing as
CotorBP∗BP (BP∗, BP∗(X)). We recall that differentials in the MANSS interact
with the s and t gradings as in the classical case, and they preserve the weight w,
an additional feature in the motivic setting.

The w = t/2 slice of the motivic Adams-Novikov E2-page for the sphere spectrum
S0,0 is plotted in the range 15 < t−s < 24 in Figure 1. We can deduce the E2-pages
for S/η and End(S/η), up to extensions, in a smaller range using the cofibration
sequences of (2.1) below.

Figure 1 is due to Ravenel [19]. Ignoring the naming of elements, his chart agrees
with Isaksen’s charts [10,11] in the plotted range. We have chosen only to label the
two elements which we will need to consider. We have labelled the first element
β4/3 as Ravenel does. We have labelled the second element z19 in accordance with
Isaksen, [11, p. 132, Table 7].

Notation 2.1. We use i for “include” and c for “collapse” throughout this paper:

S0,0 i �� S/η
c �� S2,1,

Σ−2,−1S/η
i=c∗ �� End(S/η)

c=i∗ �� S/η.

We never have to worry about differentials in our computations. For the most
part, this is due to the existence of the following vanishing line and the corollary
that follows.

Lemma 2.2. When X = S0,0, S/η, or End(S/η) we have Hs,t,w(BP∗BP ;BP∗(X))
�= 0 only when t is even and w ≤ t/2.

Proof. The result is true for X = S0,0 by [8, (36)]. We have an element α1 ∈
H1,2,1(BP∗BP ), and so multiplication by α1 gives a map H∗(BP∗BP ) −→
Σ−1,−2,−1H∗(BP∗BP ).

The first cofibration sequence of (2.1) gives a short exact sequence:

0 �� cokerα1
�� H∗(BP∗BP ;BP∗(S/η)) �� Σ0,2,1kerα1

�� 0.

Since (cokerα1)
s,t,w �= 0 only when t is even and w ≤ t/2, and the same is true

for Σ0,2,1kerα1, the result holds when X = S/η. Similarly, we can use the second
cofibration of the (2.1) sequence to show the result for End(S/η). �
Corollary 2.3. A non-zero element of Hs,2w,w(BP∗BP ;BP∗(X)), where X =
S0,0, S/η, or End(S/η), cannot be the target of a differential in the MANSS.
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Proof. The differentials with the given group as the target can be enumerated:

d2r+1 : E
s−2r−1,2(w−r),w
2r+1 −→ Es,2w,w

2r+1 , r > 0.

But E
s−2r−1,2(w−r),w
2r+1 = 0 since w > w − r. �

In this paper, we show many elements of the motivic Adams-Novikov E2-page
to be non-zero by mapping them to the classical Adams E2-page. To define the
so-called detection map we need to recall the structure of the Hopf algebroid
(BP∗BP,BP∗) and the dual Steenrod algebra (A,F2).

Notation 2.4. Recall that BP∗ = Z2[τ, v1, v2, v3 . . .]. Here Z2 denotes the 2-adics,
τ has bigrading (0,−1), and vn has bigrading (2n+1 − 2, 2n − 1). BP∗BP =
BP∗[t1, t2, t3, . . .], where |tn| = |vn| and there are structure maps making the pair
(BP∗BP,BP∗) into a Hopf algebroid.

The dual Steenrod algebra is given as an algebra by F2[ζ1, ζ2, ζ3, . . .] where |ζn| =
2n − 1. Here ζn is the Hopf conjugate of the Milnor generator ξn, and the diagonal
is given by the Milnor diagonal. We write H∗(A;M) for CotorA(F2,M) when M
is an A-comodule.

We can then define a map of Hopf algebroids.

Definition 2.5. Define (BP∗BP,BP∗) −→ (A,F2) by demanding that τ , vn, and
tn are mapped to 0, 0, and ζn, respectively. If we choose only to remember the
weight of elements in (BP∗BP,BP∗), then this map preserves degree.

We also need maps between various homology groups, compatible with the map
just defined. We note that as BP∗BP -comodules, BP∗(S/η) = BP∗〈1, t1〉 and
BP∗(End(S/η)) = BP∗(Σ

−2,−1S/η)⊗Δ
BP∗

BP∗(S/η).

Notation 2.6. Write S/2 for the classical mod 2 Moore spectrum and H∗(−) for
mod 2 homology.

We note that as A-comodules, H∗(S/2) = F2〈1, ζ1〉 and H∗(End(S/2))
= H∗(Σ

−1S/2)⊗Δ
F2

H∗(S/2).

Definition 2.7. Define BP∗(S/η) → H∗(S/2) and BP∗(End(S/η)) →
H∗(End(S/η)) by demanding that τ , vn, 1, and t1 are mapped to 0, 0, 1, and
ζ1, respectively.

We are now ready to define our detection maps.

Definition 2.8 (The detection maps). The maps of Definition 2.5 and Definition
2.7 induce maps

d : H∗(BP∗BP ) −→ H∗(A), d : H∗(BP∗BP ;BP∗(S/η)) −→ H∗(A;H∗(S/2)),

d : H∗(BP∗BP ;BP∗(End(S/η))) −→ H∗(A;H∗(End(S/2))).

We label each map by d for “detection”.

3. The self map, the homotopy classes, and the main results

In this section we state our main results, which are Proposition 3.5, Theorem 3.6
and Theorem 3.14. We define the homotopy classes which appear in Theorem 3.14.
Doing so requires defining a number of auxilary homotopy classes. In section 4 we
prove Theorem 3.14 by working at the algebraic level with the elements detecting
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t− s

s

β4/3

2

z19

2

3

Figure 1. Hs,t,t/2(BP∗BP ) in the range 15 < t − s < 24, minus
the algebra generated by the α’s. Round nodes indicate copies
of Z/2. Square nodes labelled with an n indicate copies of Z/2n.
Lines indicate multiplication by α1 and α2/2. Dashed lines indicate
hitting twice a generator. Dotted lines indicate hitting four times
a generator. Above the teal line, there are only α1-free elements.

these classes. For this reason, we keep track of all the elements detecting our
homotopy classes.

The first elements that one encounters in homotopy theory are the Hopf invariant
one elements.

Definition 3.1. We write η ∈ π1,1(S
0,0), ν ∈ π3,2(S

0,0), and σ ∈ π7,4(S
0,0) for the

motivic Hopf invariant one elements, [5]. These elements are detected by α1, α2/2,
and α4/4, respectively.

Mahowald discovered the ηj-family, [14]. These are classes which are detected
by h1hj in the Adams spectral sequence, and, thus, they are defined up to higher
Adams filtration. We need the motivic analog of η4, but we are more precise,
defining it without any indeterminacy. First, we have to address the class in the
MANSS that detects it, and we record one of its properties.

Definition 3.2 ([19]). We have the following short exact sequences of BP∗BP -
comodules:

0 �� BP∗
2 �� BP∗ �� BP∗/2 �� 0,

0 �� BP∗/2
v3
1 �� BP∗/2 �� BP∗/(2, v

3
1) �� 0.



FAMILIES IN THE HOMOTOPY OF THE MOTIVIC SPHERE SPECTRUM 2717

β4/3 is the image of v42 under the composite

H0,24,12(BP∗BP ;BP∗/(2, v
3
1))

δ1 ��H1,18,9(BP∗BP ;BP∗/2)

δ0 ��H2,18,9(BP∗BP ;BP∗).

Lemma 3.3 ([19]). We have α3
1β4/3 = 0.

Proof. From [2], we know that α1-free elements of H∗(BP∗BP ;BP∗/2) are also v1-
free. Since δ1(v

4
2) is v1-torsion, it is α1-torsion, and so β4/3 is α1-torsion. Because

α8/5 is α1-free, this means we cannot have α3
1β4/3 = α4

1α8/5, and so we must have

α3
1β4/3 = 0. �

Definition 3.4. In the motivic Adams-Novikov spectral sequence β4/3 detects a

unique homotopy class. We call this homotopy class η4 ∈ π16,9(S
0,0).

The main result of this paper is that we have a non-nilpotent self map w4
1 :

Σ20,12S/η −→ S/η. The next proposition gives a map; non-nilpotence is left for
Theorem 3.6. We will use this map to construct the infinite families of Theorem
3.14.

Proposition 3.5. There is an element x ∈ H4,24,12(BP∗BP ;BP∗(End(S/η)))
which maps to α2

1β4/3 under the collapse maps of (2.1):

H4,24,12(BP∗BP ;BP∗(End(S/η))) �� H4,24,12(BP∗BP ;BP∗(S/η))

�� H4,22,11(BP∗BP ;BP∗(S
0,0))

x � �� y � �� α2
1β4/3.

x is a permanent cycle in the MANSS for End(S/η) and so detects a map w4
1 :

Σ20,12S/η −→ S/η. Moreover, η2η4 is the composite

S18,11 i �� Σ18,11S/η
w4

1 �� Σ−2,−1S/η
c �� S0,0.

Proof. Since α3
1β4/3 = 0, there exists y mapping to α2

1β4/3. We see that α1y = 0,
and so there exists an x mapping to y.

All the target groups of the differentials emanating from

H4,24,12(BP∗BP ;BP∗(End(S/η)))

in the motivic Adams-Novikov spectral sequence are zero, and so x is a permanent
cycle. Because x maps to α2

1β4/3 and there are no elements of higher Novikov filtra-

tion in that stem and weight, we obtain the factorization of η2η4 in the proposition
statement. �

One of our main results is the following theorem. We will postpone the proof
until section 4.

Theorem 3.6. w4
1 : Σ20,12S/η −→ S/η is non-nilpotent.

We will define one of the homotopy classes that we need by a Toda bracket.
First, we must recall some relations in homotopy.
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Lemma 3.7 (Isaksen). We have the following relations: ην = 0, νσ = 0, and
ησ2 = 0.

Proof. In [5] it is proved that ην = 0 and νσ = 0. Moreover, ησ2 = 0 holds
classically [20], and this immediately implies the motivic version because there are
no “exotic” classes in the 15-stem with weight 9, [11]. �

Definition 3.8. We define σ ∈ π19,11(S
0,0) by the Toda bracket 〈ν, σ, ησ〉. There

is no indeterminacy in this Toda bracket, and the class is non-zero, [11].

To see the element which detects σ in the motivic Adams-Novikov spectral se-
quence we make note of the following property.

Lemma 3.9 (Isaksen). We have the following relation: ησ = 0.

Proof. 〈η, ν, σ〉 is defined and seen to be 0. Thus ησ = η〈ν, σ, ησ〉 = 〈η, ν, σ〉ησ =
0. �

Corollary 3.10. σ is the unique element detected by z19.

To define the infinite families of Theorem 3.14 we need to lift some homotopy
classes in π∗,∗(S

0,0) to π∗,∗(S/η). We also need to keep track of the elements
detecting these classes. That is the purpose of the next two definitions.

Definition 3.11. We write ν̃ ∈ π5,3(S/η) for a fixed choice of lift of ν ∈ π3,2(S
0,0)

under the map c : S/η −→ S2,1. This element has Novikov filtration one; we
write α̃2/2 ∈ H1,6,3(BP∗BP ;BP∗(S/η)) for the element which detects it. α̃2/2 lifts

α2/2 ∈ H1,4,2(BP∗BP ).

Definition 3.12. We fix a lift z̃19 ∈ H3,24,12(BP∗BP ;BP∗(S/η)) of z19 ∈
H3,22,11(BP∗BP ) under the map c : S/η −→ S2,1. This is a permanent cycle and

detects a homotopy class which we call ˜σ ∈ π21,12(S/η). ˜σ lifts σ ∈ π19,11(S
0,0).

We are ready to construct the homotopy classes of interest. We let Φn be the
following composite:

S/η
(w4

1)
n

�� Σ−20n,−12nS/η
c �� S2−20n,1−12n.

Recall the inclusion i : S0,0 −→ S/η and that π∗,∗(S/η) is a π∗,∗(S
0,0)-module.

Definition 3.13. For n ≥ 0, we define

gn(ν) ∈ π3+20n,2+12n(S
0,0), gn(ν2) ∈ π6+20n,4+12n(S

0,0),

gn(ν3) ∈ π9+20n,6+12n(S
0,0), gn(η2η4) ∈ π18+20n,11+12n(S

0,0),

gn(σ) ∈ π19+20n,11+12n(S
0,0), gn(σν) ∈ π22+20n,13+12n(S

0,0)

by

gn(ν) = (Φn)∗(ν̃), gn(ν2) = (Φn)∗(ν̃ν), gn(ν3) = (Φn)∗(ν̃ν
2),

gn(η2η4) = (Φn+1)∗(i), gn(σ) = (Φn)∗(˜σ), gn(σν) = (Φn)∗(˜σν).

One of our main results is the following theorem. We will postpone the proof
until section 4.

Theorem 3.14. The homotopy classes gn(ν), gn(ν2), gn(ν3), gn(η2η4), gn(σ),
gn(σν) are non-zero; i.e., they are w1-periodic.
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Proving the theorem comes down to algebra, and we can make the analogous
construction algebraically. We have a map End(S/η) ∧ S/η = Hom(S/η, S/η) ∧
Hom(S0, S/η) −→ Hom(S0, S/η) = S/η given by composition. Let ϕ be the com-
posite

H∗(BP∗BP ;BP∗(End(S/η)))⊗Δ
BP∗ H

∗(BP∗BP ;BP∗(S/η))

composition �� H∗(BP∗BP ;BP∗(S/η))

c �� H∗(BP∗BP ;BP∗(S
0,0))

and recall that H∗(BP∗BP ;BP∗(S/η)) is an H∗(BP∗BP )-module. Recall, also,
the element x of Proposition 3.5.

Definition 3.15. For n ≥ 0, we define

gn(α2/2)=ϕ(xn⊗ α̃2/2), g
n(α2

2/2)=ϕ(xn⊗ α̃2/2α2/2), g
n(α3

2/2)=ϕ(xn⊗ α̃2/2α
2
2/2),

gn(α2
1β4/3) = ϕ(xn+1 ⊗ 1), gn(z19) = ϕ(xn ⊗ z̃19), gn(z19α2/2) = ϕ(xn ⊗ z̃19α2/2).

The construction of these elements together with Moss’s convergence theorem
[18] tells us that we have the following result.

Lemma 3.16. The elements

gn(α2/2), gn(α2
2/2), gn(α3

2/2), gn(α2
1β4/3), gn(z19), and gn(z19α2/2)

detect gn(ν), gn(ν2), gn(ν3), gn(η2η4), g
n(σ), and gn(σν), respectively.

4. Proof of main results

In this section we prove Theorem 3.6 and Theorem 3.14. This comes down to
analyzing the effect of the detection map (2.8) on the class x of Proposition 3.5 and
the effect of the detection map on the classes of Definition 3.15.

In order to prove Theorem 3.6 we need the following two lemmas.

Lemma 4.1. Let d denote the detection map of Definition 2.8. We have d(α1) =
h0, d(α2/2) = h1, and d(α4/4) = h2.

Proof. One can compute directly with cocycle representatives in Ω∗(BP∗BP ). For
instance, α4/4 is represented by 5[t41]− 2[t1t2] + 9v1[t

3
1]− v1[t2] + 7v21 [t

2
1] + 2v31 [t1]−

v2[t1]. �
Lemma 4.2. Under the detection map we have d(β4/3) = h0h3.

Proof. We can compute directly with cocycle representatives in Ω∗(BP∗BP ;BP∗/2)
and Ω∗(BP∗BP ). The differential on v42 is v41 [t

8
1] + v81 [t

4
1] (mod 2), and so δ1(v

4
2) is

represented by v1[t
8
1] + v51 [t

4
1]. If we apply the differential to v1[t

8
1] + v51 [t

4
1], divide

by 2, and evaluate mod (2, v1), we obtain [t1|t81]. Thus d(β4/3) is represented by

[ζ1|ζ81 ], and we are done. �
Now we address Theorem 3.6 even though it will follow, independently, as a

corollary of Theorem 3.14. The key is to recall how Adams’ self map v41 : Σ8S/2 −→
S/2 is detected in the classical Adams spectral sequence. We have the following
cofibration sequences:

S0 i �� S/2
c �� S1,

Σ−1S/2
i=c∗ �� End(S/2)

c=i∗ �� S/2.

(4.3)
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Proposition 4.4. There exists a unique non-zero element

x ∈ H4,12(A;H∗(End(S/2))).

It maps to h3
0h3 under the collapse maps of (4.3) and is a permanent cycle in the

Adams spectral sequence for End(S/2) detecting v41 : Σ8S/2 −→ S/2:

H4,12(A;H∗(End(S/2)))
c=i∗ �� H4,12(A;H∗(S/2))

c �� H4,11(A;H∗(S
0)),

x � �� h3
0h3.

Moreover, x is non-nilpotent.

We now prove Theorem 3.6 by proving the following corollary.

Corollary 4.5. The element x ∈ H4,24,12(BP∗BP ;BP∗(End(S/η))) of Lemma 3.5
is non-nilpotent, and so w4

1 is non-nilpotent.

Proof. We consider the following diagram in which the horizontal maps are ob-
tained by applying the appropriate two collapse maps ((2.1) and (4.3)) and the
vertical maps are detection maps (2.8). It is straightforward to see that this dia-
gram commutes:

H4,24,12(BP∗BP ;BP∗(End(S/η))) ��

d

��

H4,22,11(BP∗BP )

d

��
H4,12(A;H∗(End(S/2))) �� H4,11(A)

Start with x. We chose x so that it maps right to α2
1β4/3 and we know d(α2

1β4/3) =

h3
0h3 by Lemmas 4.1 and 4.2. So d(x) gives a lift of h3

0h3, but, by Proposition 4.4,
x is the unique such lift, so d(x) = x. Since x is non-nilpotent, x is non-nilpotent.
Moreover, Corollary 2.3 tells us that no power of x can ever be hit by a differential.
We deduce that w4

1 is non-nilpotent. �

In order to prove Theorem 3.14 we need the following lemma.

Lemma 4.6. Under the detection map of Definition 2.8 we have d(z19) = c0.

Proof. We note the Massey product 〈h1, h2, h0h2〉 has zero indeterminacy and de-
fines c0, [11]. Since νσ = 0 and ησ2 = 0, we have α2/2α4/4 = 0 and α1α

2
4/4 = 0.

This means that 〈α2/2, α4/4, α1α4/4〉 is defined and its elements give a lift for c0.
The only elements in the correct trigrading to lift c0 are linear combinations of
α2
1α9 and z19. Since α9 maps to zero, z19 must map to c0. �

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. By Lemma 3.16 and Corollary 2.3 we see that it is enough
to prove that each of the following elements is non-zero in H∗(BP∗BP ):

gn(α2/2), gn(α2
2/2), gn(α3

2/2), gn(α2
1β4/3), gn(z19), and gn(z19α2/2).(4.7)

We do this by mapping to H∗(A) using the detection map d : H∗(BP∗BP ) −→
H∗(A) of Definition 2.8. In the case n = 0, they map to

h1, h
2
1, h

3
1, h

3
0h3, c0, c0h1

by Lemmas 4.1, 4.2, and 4.6, and so we’re done.
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Denote by P the Adams periodicity operator 〈h3
0h3, h0,−〉. It is known [1] that

the following elements are non-zero for all n:

Pn(h1), Pn(h2
1), Pn(h3

1), Pn(h3
0h3), Pn(c0), Pn(c0h1).(4.8)

Thus, it is enough to prove that the elements of (4.7) are mapped under d to the
elements of (4.8), respectively. Since the proofs are identical, we will only prove that
gn(α2/2) maps to Pn(h1). We proceed by induction on n. We take as the inductive

hypothesis that gn−1(α2/2) maps to Pn−1(h1). The definition of gn(α2/2) (3.15)
gives

gn(α2/2) ∈ 〈α2
1β4/3, α1, g

n−1(α2/2)〉.
Using Lemmas 4.1 and 4.2, we see that gn(α2/2) maps to Pn(h1), which completes
the inductive step. �
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