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UNIQUE CONTINUATION FOR THE SCHRÖDINGER

EQUATION WITH GRADIENT TERM

YOUNGWOO KOH AND IHYEOK SEO

(Communicated by Joachim Krieger)

Abstract. We obtain a unique continuation result for the differential inequal-
ity |(i∂t + Δ)u| ≤ |V u| + |W · ∇u| by establishing L2 Carleman estimates.
Here, V is a scalar function and W is a vector function, which may be time-
dependent or time-independent. As a consequence, we give a similar result for
the magnetic Schrödinger equation.

1. Introduction

Given a partial differential equation or inequality in R
n, we say that it has the

unique continuation property from a nonempty open subset Ω ⊂ R
n if its solution

cannot vanish in Ω without being identically zero. Historically, such property was
studied in connection with the uniqueness of the Cauchy problem. The major
method for studying the property is based on so-called Carleman estimates which
are weighted a priori estimates for the solution. The original idea goes back to
Carleman [2], who first introduced it to obtain the property for the differential
inequality |Δu| ≤ |V (x)u| with V ∈ L∞(R2) concerning the stationary Schrödinger
equation. Since then, the method has played a central role in almost all subsequent
developments either for unbounded potentials V or fractional equations (see [3, 4,
11,13,20,21] and the references therein). For the equation involving gradient term,

(1.1) |Δu| ≤ |V (x)u|+ |W (x) · ∇u|,
see [16, 23, 24] and the references therein.

Now it can be asked whether the property is shared by the differential inequality

|i∂tu+Δu| ≤ |V u|
concerning the (time-dependent) Schrödinger equation which describes how the
wave function u of a nonrelativistic quantum mechanical system with a potential
V evolves over time. It would be an interesting problem to prove the property
for this equation since such property can be viewed as one of the nonlocalization
properties of the wave function which are an important issue in quantum mechanics.
The unique continuation for this time-dependent case has been studied for decades
from a half-space Ω in R

n+1 when the potential V is time-dependent ([14, 15, 17])
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or time-independent ([19, 22]). These results were based on Carleman estimates of
the form

(1.2)
∥∥eβφ(x,t)f∥∥

B ≤ C
∥∥eβφ(x,t)(i∂t +Δ)f

∥∥
B′ ,

where β is a real parameter, φ is a suitable weight function, and B,B′ are suitable
Banach spaces of functions on R

n+1.
The new point in this paper is that we allow the gradient term ∇u in the differ-

ential inequality

(1.3) |i∂tu+Δu| ≤ |V u|+ |W · ∇u|
in the spirit of (1.1). Here, V is a scalar function and W is a vector function, which
may be time-dependent or time-independent. From the physical point of view, a
motivation behind this form also comes from the following magnetic Schrödinger
equation

(1.4) i∂tu+Δ �Au = V u

which describes the behavior of quantum mechanical systems in the presence of

a magnetic field. Here, �A = (A1, . . . , An) is a magnetic vector potential and Δ �A
denotes the magnetic Laplacian defined by

Δ �A =
∑
j

(∂j + iAj)
2

= Δ+ 2i �A · ∇+ idiv �A− | �A|2.

Replacing V and W in (1.3) with −idiv �A + | �A|2 + V and −2i �A, respectively, we
can reduce the unique continuation problem for the magnetic case to the one for
the form (1.3).

To obtain unique continuation for (1.3), we find suitable weights φ and Banach
spaces B,B′ to allow the gradient term in the left-hand side of (1.2), as follows (see
Proposition 2.1 for details):

β
∥∥eβφ(x,t)f∥∥

B + β1/2
∥∥eβφ(x,t)|∇f |

∥∥
B ≤ C

∥∥eβφ(x,t)(i∂t +Δ)f
∥∥
B′ ,

where φ(x, t) = ct+ |x|2 and B = B′ = L2
x,t. Making use of this estimate, we obtain

the following unique continuation theorem which says that if the solution of (1.3)
is supported on the inside of a paraboloid in R

n+1, then it must vanish on all of
R

n+1.

Theorem 1.1. Let V ∈ L∞ and let |W | ∈ L∞. Suppose that u ∈ H1
t ∩ H2

x is a
solution of (1.3) which vanishes in the outside of a paraboloid given by

(1.5) {(x, t) ∈ R
n+1 : c(t− t0) + |x− x0|2 > 0},

where c ∈ R \ {0} and (x0, t0) ∈ R
n+1. Then u is identically zero in R

n+1. Here,
H1

t denotes the space of functions whose derivatives up to order 1, with respect to
the time variable t, belong to L2. H2

x is similarly defined as H1
t .

Remark 1.2. The assumption u ∈ H1
t ∩H2

x can be relaxed to

(1.6) u, ∂tu,Δu ∈ L2
t (R;L

2
x(|x− x0|2 ≤ c(t0 − t)))

because we are assuming u = 0 on the set {(x, t) ∈ R
n+1 : c(t− t0)+ |x−x0|2 > 0}.

Since u(x, t) vanishes at infinity for each t, it follows from integration by parts that
∇u also satisfies (1.6).
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Regarding the condition (1.6), we give a remark that the solutions u(x, t) =
eitΔu0(x) to the free Schrödinger equation with the initial data u0 ∈ C∞

0 (Rn),
n > 2, satisfy (1.6). Indeed, we consider the case c < 0 without loss of generality.
Then we may consider t ≥ t0 only. Since eitΔu0(x) ∈ L2

x for each t, it is enough to
show that

(1.7)

∫ ∞

M

∫
|x−x0|2≤c(t0−t)

|eitΔu0(x)|2dxdt < ∞

for a sufficiently large M > t0. But, using the following well-known decay

sup
x∈Rn

|eitΔu0(x)| � |t|−n/2‖u0‖L1(Rn),

the integral in (1.7) is bounded by

C‖u0‖2L1(Rn)

∫ ∞

M

(t− t0)
n/2t−ndt ≤ C‖u0‖2L1(Rn)

∫ ∞

M

t−n/2dt

≤ C‖u0‖2L1(Rn)

if n > 2. Since ∂te
itΔu0 = eitΔiΔu0 and ΔeitΔu0 = eitΔΔu0, the condition (1.6)

for these follows from the same argument with Δu0 ∈ L1.
As mentioned above, the theorem directly implies the following result for the

magnetic case (1.4).

Corollary 1.3. Let V ∈ L∞, let | �A| ∈ L∞, and let div �A ∈ L∞. If u ∈ H1
t ∩H2

x

is a solution of (1.4) which vanishes in the outside of a paraboloid given by (1.5),
then u is identically zero in R

n+1.

There are related results for Schrödinger equations which describe the behavior
of the solutions at two different times which ensure u ≡ 0. Since the Schrödinger
equation is time reversible, it seems natural to consider this type of unique con-
tinuation from the behavior at two different time moments. Such results were first
obtained by various authors ([6,8,12,18,25]) for Schrödinger equations of the form

(1.8) (i∂t +Δ)u = V u+ F (u, u),

where V (x, t) is a time-dependent potential and F is a nonlinear term.
For the 1 − D cubic Schrödinger equations, i.e., V ≡ 0, F = ±|u|2u, n = 1 in

(1.8), Zhang [25] showed that if u = 0 in the same semiline at two times t0, t1,
then u ≡ 0 in R × [t0, t1]. His proof is based on the inverse scattering theory. In
the work of Kenig–Ponce–Vega [12], this result was completely extended to higher
dimensions under the assumption that u = 0 in the complement of a cone with an
opening < π at two times. Key steps in their proof were energy estimates for the
Fourier transform of the solution and the use of Isakov’s results [10] on local unique
continuation. The size of the set on which the solution vanishes at two times was
improved by Ionescu and Kenig [8] to the case of semispaces, i.e., cones with an
opening = π. Latter, Escauriaza–Kenig–Ponce–Vega [6]1 showed that it suffices
to assume that the solution decays sufficiently fast at two times to have unique
continuation results.

1This approach was motivated by a deep relationship between the unique continuation and
uncertainty principles for the Fourier transform. As a consequence, several remarkable results
were later obtained in both cases, linear Schrödinger equations with variable coefficients and
nonlinear ones (see, for example, [1] and the references therein). See also a good survey paper [7]
explaining several results on the subject.
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These results were extended in [5, 9] to the case where the nonlinear term F in
(1.8) involves the gradient terms ∇u,∇u. More precisely, it was shown in [9] that if
the solution vanishes in the complement of a ball at two times t0, t1, then u ≡ 0 in
R

n × [t0, t1]. In the spirit of [6], this support condition at two times was improved
in [5] to the assumption that the solution decay sufficiently fast. By applying these
works to each time interval [n, n+ 1], n ∈ Z, particularly for the linear equation

(1.9) i∂tu+Δu = V u+W · ∇u,

one can show that if the solution to (1.9) vanishes in the outside of a paraboloid
given by (1.5), then u ≡ 0 under the assumption that

(1.10) V ∈ B2,∞
x L∞

t (Rn+1), |W | ∈ B1,∞
x L∞

t (Rn+1),

where Bp,q , 1 ≤ p, q ≤ ∞, are Banach spaces with the properties that Bp,p = Lp,
1 ≤ p ≤ ∞, and Bp1,q1 ↪→ Bp2,q2 if q1 ≥ q2 and p1 ≤ p2. (See [5, 9] for details.)
But in this paper, the assumption (1.10) is improved because

Bp,∞
x L∞

t (Rn+1) ↪→ B∞,∞
x L∞

t (Rn+1) = L∞(Rn+1)

for p = 1, 2.

2. L2
Carleman estimate

In this section we obtain the following L2 Carleman estimate which is a key
ingredient for the proof of Theorem 1.1 in the next section.

Proposition 2.1. Let β > 0 and let c ∈ R. Then we have for f ∈ C∞
0 (Rn+1)

(2.1) β
∥∥eβ(ct+|x|2)f

∥∥
L2

x,t
+ β

1
2

∥∥eβ(ct+|x|2)|∇f |
∥∥
L2

x,t
≤

∥∥eβ(ct+|x|2)(i∂t +Δ)f
∥∥
L2

x,t
.

Proof. To show (2.1), we first set f = e−β(ct+|x|2)g and note that∥∥eβ(ct+|x|2)|∇f |
∥∥
L2

x,t
=

∥∥eβ(ct+|x|2)|e−β(ct+|x|2)(−2βgx+∇g)|
∥∥
L2

x,t

≤ 2β
∥∥|x|g∥∥

L2
x,t

+
∥∥|∇g|

∥∥
L2

x,t
.

Hence it is enough to show that

(2.2)

∥∥eβ(ct+|x|2)(i∂t +Δ)e−β(ct+|x|2)g
∥∥
L2

x,t

≥ β‖g‖L2
x,t

+ 2β
3
2

∥∥|x|g∥∥
L2

x,t
+ β

1
2 ‖|∇g|‖L2

x,t

for g ∈ C∞
0 (Rn+1).

By direct calculation, we see that

eβ(ct+|x|2)(i∂t +Δ)e−β(ct+|x|2)g = (i∂t +Δ+ 4β2|x|2 − 2nβ − 4βx · ∇ − iβc)g.

Let A := i∂t +Δ+ 4β2|x|2 and B := 2nβ + 4βx · ∇x + iβc such that A∗ = A and
B∗ = −B. (Here A∗ and B∗ denote adjoint operators.) Then we get∥∥eβ(ct+|x|2)(i∂t +Δ)e−β(ct+|x|2)g

∥∥2

L2
x,t

=
〈
(A−B)g, (A−B)g

〉
L2

x,t

=
〈
Ag,Ag

〉
L2

x,t
+

〈
Bg,Bg

〉
L2

x,t
+

〈
(BA−AB)g, g

〉
L2

x,t

≥
〈
(BA−AB)g, g

〉
L2

x,t
.
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Since the only terms in A and B which are not commutative each other are 4βx ·∇
and (Δ + 4β2|x|2), we see that

BA−AB = (4βx · ∇)(Δ + 4β2|x|2)− (Δ + 4β2|x|2)(4βx · ∇)

= 32β3|x|2 − 8βΔ.

Hence it follows that

(2.3)

〈
(BA−AB)g, g

〉
L2

x,t
= 32β3

〈
|x|2g, g

〉
L2

x,t
+ 8β

〈
−Δg, g

〉
L2

x,t

= 32β3
∥∥|x|g∥∥2

L2
x,t

+ 8β
∥∥|∇g|

∥∥2

L2
x,t

.

Next we notice that

−
n∑

i=1

1

2
xi

∂

∂xi
|g(x, t)|2 = −Re(∇g · xg).

By integrating this over Rn+1 and then integrating by parts on the left-hand side,
we see that

n

2
‖g‖2L2

x,t
= −Re

(∫
R

∫
Rn

∇g · xgdxdt
)

≤
∣∣∣∣
∫
R

∫
Rn

∇g · xgdxdt
∣∣∣∣

≤
∥∥|∇g|

∥∥
L2

x,t

∥∥|x|g∥∥
L2

x,t
.

Hence, by combining this inequality2 and (2.3), we conclude that

〈
(BA−AB)g, g

〉
L2

x,t
≥ (31β3)

∥∥|x|g∥∥2

L2
x,t

+ (7β)
∥∥|∇g|

∥∥2

L2
x,t

+ nβ2‖g‖2L2
x,t

,

since

2β2
∥∥|∇g|

∥∥
L2

x,t

∥∥|x|g∥∥
L2

x,t
≤ β3

∥∥|∇g|
∥∥2

L2
x,t

+ β
∥∥|x|g∥∥2

L2
x,t

.

This implies (2.2) because of
√
3(a2 + b2 + c2)1/2 ≥ |a|+ |b|+ |c|. Indeed,

∥∥eβ(ct+|x|2)(i∂t +Δ)e−β(ct+|x|2)g
∥∥
L2

x,t

=
〈
(A−B)g, (A−B)g

〉1/2
L2

x,t

≥
(
31β3

∥∥|x|g∥∥2

L2
x,t

+ 7β
∥∥|∇g|

∥∥2

L2
x,t

+ nβ2‖g‖2L2
x,t

)1/2

≥ 1√
3

(√
31β3

∥∥|x|g∥∥
L2

x,t
+

√
7β

∥∥|∇g|
∥∥
L2

x,t
+

√
nβ2‖g‖L2

x,t

)

≥ β‖g‖L2
x,t

+ 2β
3
2

∥∥|x|g∥∥
L2

x,t
+ β

1
2 ‖|∇g|‖L2

x,t
.

�

2If we consider L2
x instead of L2

x,t, this inequality is indeed the Heisenberg uncertainty principle

in n dimensions (‖|∇g|‖L2
x
= 2π‖|ξ|ĝ‖L2

ξ
).
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3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1 using Proposition 2.1.
By translation we may first assume that (x0, t0) = (0, 0) so that the solution u

vanishes in the paraboloid {(x, t) ∈ R
n+1 : ct + |x|2 > 0}. Now, from induction it

suffices to show that u = 0 in the following set:

S = {(x, t) ∈ R
n+1 : −1 < ct+ |x|2 ≤ 0}.

To show this, we make use of the Carleman estimate in Proposition 2.1.
Let ψ : Rn+1 → [0,∞) be a smooth function such that suppψ ⊂ B(0, 1) and∫

Rn+1

ψ(x, t)dxdt = 1.

Also, let φ : Rn+1 → [0, 1] be a smooth function such that φ = 1 in B(0, 1) and φ = 0
in R

n+1 \ B(0, 2). For 0 < ε < 1 and R ≥ 1, we set ψε(x, t) = ε−(n+1)ψ(x/ε, t/ε)
and φR(x, t) = φ(x/R, t/R).

Now we apply the Carleman estimate (2.1) to the following C∞
0 function:

v(x, t) = (u ∗ ψε)(x, t)φR(x, t).

Then, we see that

β
∥∥eβ(ct+|x|2)v

∥∥
L2

x,t
+ β

1
2

∥∥eβ(ct+|x|2)|∇v|
∥∥
L2

x,t
≤

∥∥eβ(ct+|x|2)(i∂t +Δ)v
∥∥
L2

x,t
.

Note that

∇v = (∇u ∗ ψε)φR + (u ∗ ψε)∇φR

and

(i∂t +Δ)v =
(
(i∂t +Δ)u ∗ ψε

)
φR + (u ∗ ψε)(i∂t +Δ)φR + 2(∇u ∗ ψε) · ∇φR.

Since v is supported in {(x, t) ∈ R
n+1 : ct + |x|2 ≤ ε} and we are assuming

u ∈ H1
t ∩H2

x, by letting R → ∞, we get

β
∥∥eβ(ct+|x|2)(u ∗ ψε)

∥∥
L2

x,t
+ β

1
2

∥∥eβ(ct+|x|2)|∇u ∗ ψε|
∥∥
L2

x,t

≤
∥∥eβ(ct+|x|2)(i∂t +Δ)(u ∗ ψε)

∥∥
L2

x,t
.

Again by letting ε → 0,

β
∥∥eβ(ct+|x|2)u

∥∥
L2

x,t
+ β

1
2

∥∥eβ(ct+|x|2)|∇u|
∥∥
L2

x,t
≤

∥∥eβ(ct+|x|2)(i∂t +Δ)u
∥∥
L2

x,t
.

Hence it follows that

β
∥∥eβ(ct+|x|2)u

∥∥
L2

x,t(S)
+ β

1
2

∥∥eβ(ct+|x|2)|∇u|
∥∥
L2

x,t(S)

≤
∥∥eβ(ct+|x|2)(i∂t +Δ)u

∥∥
L2

x,t(S)
+

∥∥eβ(ct+|x|2)(i∂t +Δ)u
∥∥
L2

x,t(R
n+1\S)

.

By (1.3), we see that

∥∥eβ(ct+|x|2)(i∂t +Δ)u
∥∥
L2

x,t(S)
≤ ‖V ‖L∞

∥∥eβ(ct+|x|2)u
∥∥
L2

x,t(S)

+
∥∥|W |

∥∥
L∞

∥∥eβ(ct+|x|2)|∇u|
∥∥
L2

x,t(S)
.



UNIQUE CONTINUATION 2561

Hence if we choose β large enough so that ‖V ‖L∞ ≤ β/2 and
∥∥|W |

∥∥
L∞ ≤ β1/2/2,

we get

β
∥∥eβ(ct+|x|2)u

∥∥
L2

x,t(S)
+ β

1
2

∥∥eβ(ct+|x|2)|∇u|
∥∥
L2

x,t(S)

≤ 2
∥∥eβ(ct+|x|2)(i∂t +Δ)u

∥∥
L2

x,t(R
n+1\S)

.

Since u vanishes in {(x, t) ∈ R
n+1 : ct + |x|2 > 0} and u ∈ H1

t ∩ H2
x, we also see

that∥∥eβ(ct+|x|2)(i∂t +Δ)u
∥∥
L2(Rn+1\S)

=
∥∥eβ(ct+|x|2)(i∂t +Δ)u

∥∥
L2({(x,t):ct+|x|2≤−1})

≤ e−β
∥∥(i∂t +Δ)u

∥∥
L2({(x,t):ct+|x|2≤−1})

≤ Ce−β.

Hence, we get

β
∥∥eβ(ct+|x|2+1)u

∥∥
L2(S)

+ β
1
2

∥∥eβ(ct+|x|2+1)|∇u|
∥∥
L2(S)

≤ 2C.

Since ct+ |x|2 + 1 > 0 for (x, t) ∈ S,

β‖u‖L2(S) + β
1
2

∥∥|∇u|
∥∥
L2(S)

≤ 2C.

By letting β → ∞ we now conclude that u = 0 on S. This completes the proof.
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