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WILLMORE INEQUALITY ON HYPERSURFACES

IN HYPERBOLIC SPACE
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(Communicated by Lei Ni)

Abstract. In this article, we prove a geometric inequality for star-shaped and
mean-convex hypersurfaces in hyperbolic space by inverse mean curvature flow.
This inequality can be considered as a generalization of Willmore inequality
for a closed surface in hyperbolic 3-space.

1. Introduction

The classical isoperimetric inequality and its generalization, the Alexandrov-
Fenchel inequalities, play an important role in different branches of geometry. Let
Ω ⊂ R

n be a smooth bounded domain with boundary Σ. Then the classical isoperi-
metric inequality is

|Σ| ≥ n
n−1
n ω

1
n
n−1|Ω|

n−1
n ,(1.1)

and equality in (1.1) holds if and only if Ω is a geodesic ball.
For k ∈ {1, · · · , n−1}, we denote by pk the normalized k-th order mean curvature

of Σ, and set p0 = 1 by convention. The celebrated Alexandrov-Fenchel inequalities
[1, 2, 15] for convex hypersurface Σn−1 ⊂ R

n are

1

ωn−1

∫
Σ

pkdμ ≥
(

1

ωn−1

∫
Σ

pjdμ

)n−1−k
n−1−j

, 0 ≤ j < k ≤ n− 1,(1.2)

and equality in (1.2) holds if and only if Σ is a geodesic sphere.
Since the isoperimetric inequality holds for non-convex domains, it is natural

to extend the original Alexandrov-Fenchel inequality to non-convex domains; see
[7–9,20,21,28,31], etc. We should also mention that the Willmore inequality, which
is a weaker form of Alexandrov-Fenchel inequality, has been established for closed
surfaces in R

3; see e.g. [10, 26, 30]. More precisely, for any closed surface Σ ⊂ R
3,

the Willmore inequality is ∫
Σ

p21dμ ≥ ω2 = 4π,(1.3)

and equality in (1.3) holds if and only if Σ is a geodesic sphere.
It is interesting to establish the Alexandrov-Fenchel inequalities for hypersurfaces

in hyperbolic space; see [4, 16]. Recently, the following hyperbolic Alexandrov-
Fenchel inequalities were obtained by Ge-Wang-Wu [17,18] and Wang-Xia [32].
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Theorem A ([17, 18, 32]). Let k ∈ {1, · · · , n − 1}. Any horospherical convex
hypersurface Σ ⊂ H

n satisfies

∫
Σ

pkdμ ≥ ωn−1

⎡
⎣( |Σ|

ωn−1

) 2
k

+

(
|Σ|
ωn−1

) 2(n−1−k)
k(n−1)

⎤
⎦

k
2

.(1.4)

Equality in (1.4) holds if and only if Σ is a geodesic sphere.

Inequality (1.4) was proved in [17] for k = 4 and in [18] for general even k. For
k = 1, (1.4) was proved in [18] with a help of a result of Cheng and Zhou [12]. For
general integer k, (1.4) was proved in [32].

For k = 2, inequality (1.4) was proved by Li-Wei-Xiong [25] under a weaker
condition that Σ is star-shaped and 2-convex (i.e., p2 > 0). More precisely,

Theorem B ([25]). Any star-shaped and 2-convex hypersurface Σ ⊂ H
n (n ≥ 3)

satisfies ∫
Σ

p2dμ ≥ ω
2

n−1

n−1 |Σ|
n−3
n−1 + |Σ|.(1.5)

Equality in (1.5) holds if and only if Σ is a geodesic sphere.

The Willmore inequality (1.3) has also been generalized to closed surface Σ ⊂ H
3;

see e.g. [11, 27, 29, 33].

Theorem C ([11, 27, 29, 33]). Any closed surface Σ ⊂ H
3 satisfies∫

Σ

(p21 − 1)dμ ≥ ω2 = 4π.(1.6)

Equality in (1.6) holds if and only if Σ is a geodesic sphere.

To generalize the hyperbolic Willmore inequality to higher dimension, the posi-
tivity of the functional

∫
Σ
(p21−1)dμ has already been known. This follows from the

optimal Reilly inequality for submanifolds of hyperbolic space, which was achieved
by El Soufi and Ilias [14].

Theorem D ([14]). Let (Mm, g) (m ≥ 2) be a compact and connected Riemannian
manifold isometrically immersed in H

n by φ. Then

λ1(M) ≤ m

|M |

∫
M

(|H|2 − 1)dμ,(1.7)

where λ1(M) is the first non-zero eigenvalue of Laplacian of (M, g) and H is the
mean curvature vector of M . Furthermore, equality in (1.7) holds if and only if

φ(M) is minimally immersed in a geodesic sphere of radius sinh−1(
√

m
λ1(M) ).

Inspired by these previous results, we prove the Willmore inequality for star-
shaped and mean-convex (i.e., p1 > 0) hypersurfaces in hyperbolic space.

Theorem 1. Any star-shaped and mean-convex hypersurface Σ ⊂ H
n (n ≥ 3)

satisfies ∫
Σ

(p21 − 1)dμ ≥ ω
2

n−1

n−1 |Σ|
n−3
n−1 .(1.8)

Equality in (1.8) holds if and only if Σ is a geodesic sphere.
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We expect that the inequality (1.8) will be useful in defining the Hawking mass
for hypersurfaces in H

n. In [24], the Hawking mass for a closed embedded surface
Σ in H

3 is defined as

mH(Σ) =

√
|Σ|
16π

[
1− 1

4π

∫
Σ

(p21 − 1)dμ

]
.

We now give the outline of the proof of Theorem 1. In fact, we prove it in a
more general setting. Motivated by [6, 13, 25], we adopt the inverse curvature flow
(ICF)

∂tX =
1

(n− 1)p
1/k
k

ν

in our proof. When k = 1, this flow is just inverse mean curvature flow, which
has been used by Huisken and Ilmanen [22, 23] to prove the Riemannian Penrose
inequality in general relativity. We start from a given star-shaped and k-convex
hypersurface Σ in hyperbolic space and evolve it by ICF. By the convergence results
of Gerhardt [19], this flow exists for all time, and the evolving hypersurface Σt with
Σ0 = Σ remains star-shaped and k-convex for all t ≥ 0.

We next consider the quantity

Qk(t) := |Σt|−
n−3
n−1

∫
Σt

(p
2/k
k − 1)dμ.

We study the limit of Qk(t) as t → ∞. Notice that the roundness estimate for Σt

is not strong enough to calculate the limit of Qk(t). However, similar to [6,25], we
are able to give a positive lower bound for the limit of Qk(t), which will be used
to establish the monotonicity of Qk(t). Finally, we prove that for k = 1, 2, Qk(t) is
monotone decreasing under ICF. From this, Theorem 1 follows immediately.

2. Preliminaries

In this article, we consider the hyperbolic space H
n = R

+ × S
n−1 equipped with

the metric

g = dr2 + sinh2 rgSn−1 ,

where gSn−1 is the standard round metric on the unit sphere Sn−1. Let Σ ⊂ H
n be a

closed hypersurface with its unit outward normal vector ν. The second fundamental
form h of Σ is defined by

h(X,Y ) = 〈∇Xν, Y 〉

for any X,Y ∈ TΣ. The principal curvature κ = (κ1, · · · , κn−1) comprises the
eigenvalues of h with respect to the induced metric g on Σ. For k ∈ {1, · · · , n− 1},
the normalized k-th elementary symmetric polynomial of κ is defined as

pk(κ) :=
1(

n−1
k

) ∑
i1<i2<···<ik

κi1 · · ·κik ,

which can also be viewed as a function of the second fundamental form hj
i = gjkhki.

For simplicity, we write pk for pk(κ). The following lemma can be regarded as a
normalized version of Lemma 2 in [25].
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Lemma 2. Let (Tk−1)
i
j :=

∂pk

∂hj
i

and (h2)ji := h�
ih

j
�. Then we have∑

i,j

(Tk−1)
j
ih

i
j =kpk,

∑
i,j

(Tk−1)
j
i δ

i
j = kpk−1,

∑
i,j

(Tk−1)
j
i (h

2)ij =(n− 1)p1pk−1 − (n− 1− k)pk+1.

Moreover, if κ ∈ Γ+
k , we have the following Newton-MacLaurin inequalities:

pk−1pk+1

p2k
≤ 1,

p1pk−1

pk
≥ 1,(2.1)

and equality holds in (2.1) at a given point if and only if Σ is umbilical at this point.

We now consider the inverse curvature flow (ICF)

∂tX =
1

(n− 1)p
1/k
k

ν,(2.2)

where Σt = X(t, ·) is a family of hypersurfaces in H
n, ν is the unit outward normal

to Σt = X(t, ·). Let dμt be its area element on Σt. By the divergence free property
of Tk−1, we list the following evolution equations.

Lemma 3. Under ICF (2.2), we have

∂tpk =− 1

n− 1
∇i

[
(Tk−1)

j
i∇j

(
1

p
1/k
k

)]

− 1

(n− 1)p
1/k
k

[(n− 1)p1pk − (n− 1− k)pk+1 − kpk−1],

(2.3)

∂tdμ =
p1

p
1/k
k

dμ.(2.4)

In [19], Gerhardt investigated the inverse curvature flow of star-shaped hyper-
surfaces in hyperbolic space and proved the following long-time existence and con-
vergence result.

Theorem 4 ([19]). If the initial hypersurface is star-shaped and k-convex, then
the solution for inverse curvature flow (2.2) exists for all time t and preserves the
condition of star-shapedness and k-convexity. Moreover, the hypersurfaces become
strictly convex exponentially fast and more and more totally umbilical in the sense
of

|hj
i − δji | ≤ Ce−

t
n−1 , t > 0;

i.e., the principal curvatures are uniformly bounded and converge exponentially fast
to one.

3. The asymptotic behavior of monotone quantity

We define the quantity

Qk(t) := |Σt|−
n−3
n−1

∫
Σt

(p
2/k
k − 1)dμ,
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where |Σt| is the area of Σt. In this section, we estimate the lower bound of the
limit of Qk(t). First of all, we recall Lemma 7 of [25], which is an application of
the sharp Sobolev inequality on S

n−1 due to Beckner [3].

Lemma 5. For every positive function f on S
n−1, we have∫

Sn−1

fn−3dvolSn−1 +
n− 3

n− 1

∫
Sn−1

fn−5|∇f |2dvolSn−1

≥ ω
2

n−1

n−1

(∫
Sn−1

fn−1dvolSn−1

)n−3
n−1

.

(3.1)

Moreover, equality in (3.1) holds if and only if f is a constant.

Proposition 6. Under ICF (2.2), we have

lim inf
t→∞

Qk(t) ≥ ω
2

n−1

n−1 .(3.2)

Proof. Recall that star-shaped hypersurfaces can be written as graphs of function
r = r(t, θ), θ ∈ S

n−1. Denote λ(r) = sinh(r); then λ′(r) = cosh(r). We next define
a function ϕ(θ) = Φ(r(θ)), where Φ(r) is a positive function satisfying Φ′ = 1

λ . Let

θ =
{
θj
}
, j = 1, · · · , n − 1, be a coordinate system on S

n−1 and ϕi, ϕij be the
covariant derivatives of ϕ with respect to the metric gSn−1 . Define

v =
√
1 + |∇ϕ|2

Sn−1 .

From [19], we know that

λ = O(e
t

n−1 ), |∇ϕ|Sn−1 + |∇2ϕ|Sn−1 = O(e−
t

n−1 ).(3.3)

Since λ′ =
√
1 + λ2, we have

λ′ = λ

(
1 +

1

2
λ−2 +O(e−

4t
n−1 )

)
.(3.4)

From (3.3), we also have

1

v
= 1− 1

2
|∇ϕ|2

Sn−1 +O(e−
4t

n−1 ).(3.5)

In terms of ϕ, we can express the metric and the second fundamental form of Σ as

gij =λ2(σij + ϕiϕj),

hij =
λ′

vλ
gij −

λ

v
ϕij ,

where σij = gSn−1(∂θi , ∂θj ). Denote ai =
∑

k σ
ikϕki and note that

∑
i ai = ΔSn−1ϕ.

By (3.3), the principal curvatures of Σt take the following form

κi =
λ′

vλ
− ai

vλ
+O(e−

4t
n−1 ), i = 1, · · · , n− 1.

Then we have

pk =

(
λ′

vλ

)k

− k

n− 1

(
λ′

vλ

)k−1
ΔSn−1ϕ

vλ
+O(e−

4t
n−1 ).

By using (3.4) and (3.5), we get

pk =

(
1 +

k

2λ2
−

k|∇ϕ|2
Sn−1

2

)
− k

n− 1

ΔSn−1ϕ

λ
+O(e−

4t
n−1 ).
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Hence, we have

p
2/k
k − 1 =

1

λ2
− |∇ϕ|2

Sn−1 −
2

n− 1

ΔSn−1ϕ

λ
+O(e−

4t
n−1 ).

On the other hand,

√
det g =

[
λn−1 +O(e

(n−3)t
n−1 )

]√
det gSn−1 .

So we have∫
Σt

(p
2/k
k − 1)dμ =

∫
Sn−1

λn−1(p
2/k
k − 1)dvolSn−1 +O(e

(n−5)t
n−1 )

=

∫
Sn−1

(
λn−3 − λn−1|∇ϕ|2

Sn−1

)
dvolSn−1

− 2

n− 1

∫
Sn−1

λn−2ΔSn−1ϕdvolSn−1 +O(e
(n−5)t
n−1 )

=

∫
Sn−1

(
λn−3 − λn−1|∇ϕ|2

Sn−1

)
dvolSn−1

+
2(n− 2)

n− 1

∫
Sn−1

λn−3〈∇λ,∇ϕ〉Sn−1dvolSn−1 +O(e
(n−5)t
n−1 ).

Since ∇λ = λλ′∇ϕ, it follows that |∇λ−λ2∇ϕ|g
Sn−1 ≤ O(e−

t
n−1 ). We deduce that

(3.6)

∫
Σt

(p
2/k
k − 1)dμ =

∫
Sn−1

(
λn−3 +

n− 3

n− 1
λn−5|∇λ|2

)
dvolSn−1 +O(e

(n−5)t
n−1 ).

Moreover,

|Σt|
n−3
n−1 =

(∫
Sn−1

λn−1dvolSn−1

)n−3
n−1

+O(e
(n−5)t
n−1 ).

Using Lemma 5, we achieve

lim inf
t→∞

|Σt|−
n−3
n−1

∫
Σt

(p
2/k
k − 1)dμ ≥ ω

2
n−1

n−1 .

�

4. Monotonicity

In this section, we show that for k = 1, 2, the quantity Qk(t) is monotone
decreasing under ICF (2.2).

Proposition 7. Under ICF (2.2), the quantity Qk(t) is monotone decreasing for
k = 1, 2. Moreover, d

dtQk(t) = 0 at some time t if and only if Σt is totally umbilical.
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Proof. Under ICF (2.2), by (2.3) we have

d

dt

∫
Σt

(p
2
k

k − 1)dμ

=

∫
Σt

2

k
p

2
k−1

k ∂tpk + (p
2
k

k − 1)p1p
− 1

k

k dμ

=− 2

k(n− 1)

∫
Σt

p
2
k−1

k ∇i
[
(Tk−1)

j
i∇j(p

− 1
k

k )
]
dμ

−
∫
Σt

2p
1
k−1

k

k(n− 1)
[(n− 1)p1pk − (n− 1− k)pk+1 − kpk−1] dμ

+

∫
Σt

(p
2
k

k − 1)p1p
− 1

k

k dμ

=− 2

k2(n− 1)

(
2

k
− 1

)∫
Σt

p
1
k−3

k (Tk−1)
j
i∇ipk∇jpkdμ

+

∫
Σt

[
p1p

− 1
k

k (p
2
k

k − 1) +
2

k
p

1
k

k

(
pk+1

pk
− p1

)
− 2

n− 1
p

1
k−1

k (pk+1 − pk−1)

]
dμ

=:I + II.

Since (Tk−1)
j
i is positive definite if pk > 0, we get I ≤ 0 for k = 1, 2. To handle

the second term, we analyze it for k = 1, 2 separately. By the Newton-MacLaurin

inequality, if pk > 0, then p1 ≥ p
1
2
2 ≥ · · · ≥ p

1
k

k > 0.

(i) If k = 1, then

II =

∫
Σt

[
(p21 − 1) + 2(p2 − p21)−

2

n− 1
(p2 − 1)

]
dμ

=

∫
Σt

[
2n− 4

n− 1
p2 − p21 −

n− 3

n− 1

]
dμ

≤n− 3

n− 1

∫
Σt

(p21 − 1)dμ.

(ii) If k = 2, then

II =

∫
Σt

[
p1p

− 1
2

2 (p2 − 1) + p
1
2
2

(
p3
p2

− p1

)
− 2

n− 1
p
− 1

2
2 (p3 − p1)

]
dμ

=
n− 3

n− 1

∫
Σt

p
− 1

2
2 (p3 − p1)dμ

≤n− 3

n− 1

∫
Σt

(p2 − 1)dμ.

Combining with Proposition 6, we know that the quantity∫
Σt

(p
2/k
k − 1)dμ

is positive under ICF (2.2). By (2.4) we get

d

dt
|Σt| =

∫
Σt

p1

p
1/k
k

dμ ≥ |Σt|.
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Therefore, for k = 1, 2, we have

d

dt
Qk(t) ≤ 0.

If the equality holds, then the Newton-MacLaurin inequalities assure equalities
everywhere on Σt. Therefore Σt is totally umbilical. �

Now we complete the proof of Theorem 1.

Proof of Theorem 1. For k = 1, 2, since Qk(t) is monotone decreasing, we have

Qk(0) ≥ lim inf
t→∞

Qk(t) ≥ ω
2

n−1

n−1 .

This implies that Σ0 = Σ satisfies∫
Σ

(p
2/k
k − 1)dμ ≥ ω

2
n−1

n−1 |Σ|
n−3
n−1 .

Now if we assume that equality in (1.8) is attained, then Qk(t) is a constant. Then
Proposition 7 indicates that Σt is totally umbilical and therefore a geodesic sphere.
If Σ is a geodesic sphere of radius r, then |Σ| = ωn−1 sinh

n−1 r and p1 = coth r.
Hence, we have∫

Σ

(p
2/k
k − 1)dμ = ωn−1 sinh

n−1 r(coth2 r − 1) = ω
2

n−1

n−1 |Σ|
n−3
n−1 .

Therefore, equality in (1.8) holds on a geodesic sphere. This completes the proof
of Theorem 1. �

Remark 8. In fact, for k = 1 we prove Theorem 1, and for k = 2 we recover
Theorem B proved by Li-Wei-Xiong [25].

It is natural to put forward the following question.

Question. For k ∈ {3, · · · , n − 1}, let Σ ⊂ H
n (n ≥ k + 1) be a star-shaped and

k-convex hypersurface. Then∫
Σ

(p
2/k
k − 1)dμ ≥ ω

2
n−1

n−1 |Σ|
n−3
n−1 .(4.1)

Equality in (4.1) holds if and only if Σ is a geodesic sphere.

Acknowledgments

The author would like to thank the referee for valuable comments and sug-
gestions. The author is very grateful to Professor Hongwei Xu for his support,
encouragement, and stimulating discussions over the years. He would also like to
thank Professor Haizhong Li for his interest and discussions.

References

[1] A. D. Alexandrov, Zur Theorie der gemischten Volumnia von konvexen Körpern, II: Neue
Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sb. 44
(1937), 1205–1238.

[2] A. D. Alexandrov, Zur Theorie der gemischten Volumnia von konvexen Körpern, III: Die
Erweiterung zweeier Lehrsatze Minkowskis über die konvexen Polyeder auf beliebige konvexe
Flachen, Mat. Sb. 45 (1938), 27–46.

[3] William Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequal-
ity, Ann. of Math. (2) 138 (1993), no. 1, 213–242. MR1230930

http://www.ams.org/mathscinet-getitem?mr=1230930


WILLMORE INEQUALITY ON HYPERSURFACES IN HYPERBOLIC SPACE 2687

[4] Alexandr A. Borisenko and Vicente Miquel, Total curvatures of convex hypersurfaces in
hyperbolic space, Illinois J. Math. 43 (1999), no. 1, 61–78. MR1665641

[5] Simon Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math.

Inst. Hautes Études Sci. 117 (2013), 247–269. MR3090261
[6] Simon Brendle, Pei-Ken Hung, and Mu-Tao Wang, A Minkowski inequality for hypersurfaces

in the anti–de Sitter–Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1,
124–144. MR3433631

[7] Sun-Yung Alice Chang and Yi Wang, On Aleksandrov-Fenchel inequalities for k-convex do-
mains, Milan J. Math. 79 (2011), no. 1, 13–38. MR2831436

[8] Sun-Yung Alice Chang and Yi Wang, Inequalities for quermassintegrals on k-convex domains,
Adv. Math. 248 (2013), 335–377. MR3107515

[9] Sun-Yung A. Chang and Yi Wang, Some higher order isoperimetric inequalities via the
method of optimal transport, Int. Math. Res. Not. IMRN 24 (2014), 6619–6644. MR3291634

[10] Bang-yen Chen, On the total curvature of immersed manifolds. I. An inequality of Fenchel-
Borsuk-Willmore, Amer. J. Math. 93 (1971), 148–162. MR0278240

[11] Bang-yen Chen, Some conformal invariants of submanifolds and their applications (English,

with Italian summary), Boll. Un. Mat. Ital. (4) 10 (1974), 380–385. MR0370436
[12] Xu Cheng and Detang Zhou, Rigidity for closed totally umbilical hypersurfaces in space

forms, J. Geom. Anal. 24 (2014), no. 3, 1337–1345. MR3223556
[13] Levi Lopes de Lima and Frederico Girão, An Alexandrov-Fenchel-type inequality in hyperbolic

space with an application to a Penrose inequality, Ann. Henri Poincaré 17 (2016), no. 4, 979–
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