Strongness of companion bases for cluster-tilted algebras of finite type
Authors:
Karin Baur and Alireza Nasr-Isfahani
Journal:
Proc. Amer. Math. Soc. 146 (2018), 2409-2416
MSC (2010):
Primary 16G10, 16G20, 13F60, 16S70; Secondary 05E10
DOI:
https://doi.org/10.1090/proc/13977
Published electronically:
February 16, 2018
MathSciNet review:
3778144
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For every cluster-tilted algebra of simply-laced Dynkin type we provide a companion basis which is strong, i.e., gives the set of dimension vectors of the finitely generated indecomposable modules for the cluster-tilted algebra. This shows in particular that every companion basis of a cluster-tilted algebra of simply-laced Dynkin type is strong. Thus we give a proof of Parsons's conjecture.
- [1] I. Assem, T. Brüstle, and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151–162. MR 2409188, https://doi.org/10.1112/blms/bdm107
- [2] Michael Barot, Christof Geiss, and Andrei Zelevinsky, Cluster algebras of finite type and positive symmetrizable matrices, J. London Math. Soc. (2) 73 (2006), no. 3, 545–564. MR 2241966, https://doi.org/10.1112/S0024610706022769
- [3] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, https://doi.org/10.1016/j.aim.2005.06.003
- [4] Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. MR 2247893, https://doi.org/10.1090/S0002-9947-06-03879-7
- [5] Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), no. 1, 143–177. MR 2365411, https://doi.org/10.4171/CMH/121
- [6] Philippe Caldero, Frédéric Chapoton, and Ralf Schiffler, Quivers with relations and cluster tilted algebras, Algebr. Represent. Theory 9 (2006), no. 4, 359–376. MR 2250652, https://doi.org/10.1007/s10468-006-9018-1
- [7] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (𝐴_{𝑛} case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347–1364. MR 2187656, https://doi.org/10.1090/S0002-9947-05-03753-0
- [8] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, https://doi.org/10.1090/S0894-0347-01-00385-X
- [9] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121. MR 2004457, https://doi.org/10.1007/s00222-003-0302-y
- [10] Tomoki Nakanishi and Salvatore Stella, Diagrammatic description of 𝑐-vectors and 𝑑-vectors of cluster algebras of finite type, Electron. J. Combin. 21 (2014), no. 1, Paper 1.3, 107. MR 3177498
- [11] Mark James Parsons, Companion bases for cluster-tilted algebras, Algebr. Represent. Theory 17 (2014), no. 3, 775–808. MR 3254769, https://doi.org/10.1007/s10468-013-9418-y
- [12]
M. J. Parsons, On indecomposable modules over cluster-tilted algebras of type
, Ph.D. Thesis, University of Leicester, 2007.
- [13] Claus Michael Ringel, Cluster-concealed algebras, Adv. Math. 226 (2011), no. 2, 1513–1537. MR 2737792, https://doi.org/10.1016/j.aim.2010.08.014
- [14] Bin Zhu, Equivalences between cluster categories, J. Algebra 304 (2006), no. 2, 832–850. MR 2264281, https://doi.org/10.1016/j.jalgebra.2006.03.012
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16G10, 16G20, 13F60, 16S70, 05E10
Retrieve articles in all journals with MSC (2010): 16G10, 16G20, 13F60, 16S70, 05E10
Additional Information
Karin Baur
Affiliation:
Institut für Mathematik und Wissenschaftliches Rechnen, Universität Graz, Heinrichstrasse 36, A-8010 Graz, Austria
Email:
baurk@uni-graz.at
Alireza Nasr-Isfahani
Affiliation:
Department of Mathematics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran—and—School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
Email:
nasr_a@sci.ui.ac.ir, nasr@ipm.ir
DOI:
https://doi.org/10.1090/proc/13977
Keywords:
Cluster-tilted algebra,
companion basis,
indecomposable modules,
dimension vector,
relation-extension algebra,
root system,
Euler form
Received by editor(s):
March 15, 2017
Received by editor(s) in revised form:
July 31, 2017, and September 10, 2017
Published electronically:
February 16, 2018
Communicated by:
Jerzy Weyman
Article copyright:
© Copyright 2018
American Mathematical Society