The Douady-Earle extensions are not always harmonic
HTML articles powered by AMS MathViewer
- by Manman Jiang, Lixin Liu and Hongyu Yao
- Proc. Amer. Math. Soc. 146 (2018), 2853-2865
- DOI: https://doi.org/10.1090/proc/13047
- Published electronically: March 19, 2018
- PDF | Request permission
Abstract:
In this paper we give examples to show that the Douady-Earle extensions are not always harmonic. Furthermore, we discuss the criterion for the Douady-Earle extensions to be harmonic.References
- S. L. Al’ber, On n-dimensional problems in the calculus of variations in the large, Sov. Math. Dokl 5 (1964), 700–704.
- Kazuo Akutagawa, Harmonic diffeomorphisms of the hyperbolic plane, Trans. Amer. Math. Soc. 342 (1994), no. 1, 325–342. MR 1147398, DOI 10.1090/S0002-9947-1994-1147398-9
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23–48. MR 857678, DOI 10.1007/BF02392590
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Clifford J. Earle, Conformally natural extension of vector fields from $S^{n-1}$ to $B^n$, Proc. Amer. Math. Soc. 102 (1988), no. 1, 145–149. MR 915733, DOI 10.1090/S0002-9939-1988-0915733-2
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Robert Hardt and Michael Wolf, Harmonic extensions of quasiconformal maps to hyperbolic space, Indiana Univ. Math. J. 46 (1997), no. 1, 155–163. MR 1462800, DOI 10.1512/iumj.1997.46.1351
- Philip Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967), 673–687. MR 214004, DOI 10.4153/CJM-1967-062-6
- Jürgen Jost, Two-dimensional geometric variational problems, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1991. A Wiley-Interscience Publication. MR 1100926
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps, Ann. of Math. (2) 137 (1993), no. 1, 167–201. MR 1200080, DOI 10.2307/2946622
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps. II, Indiana Univ. Math. J. 42 (1993), no. 2, 591–635. MR 1237061, DOI 10.1512/iumj.1993.42.42027
- Peter Li and Luen-Fai Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), no. 1, 1–46. MR 1109619, DOI 10.1007/BF01232256
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 211–228. MR 510549, DOI 10.24033/asens.1344
- Richard M. Schoen, The role of harmonic mappings in rigidity and deformation problems, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 179–200. MR 1201611
- Richard Schoen and Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), no. 3, 265–278. MR 478219, DOI 10.1007/BF01403164
- Yuguang Shi, Luen-Fai Tam, and Tom Y.-H. Wan, Harmonic maps on hyperbolic spaces with singular boundary value, J. Differential Geom. 51 (1999), no. 3, 551–600. MR 1726739
- Luen-Fai Tam and Tom Y. H. Wan, Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space, J. Differential Geom. 42 (1995), no. 2, 368–410. MR 1366549
- A. J. Tromba, Global analysis and Teichmüller theory, Seminar on new results in nonlinear partial differential equations (Bonn, 1984) Aspects Math., E10, Friedr. Vieweg, Braunschweig, 1987, pp. 167–198. MR 896283
- Pekka Tukia, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta Math. 154 (1985), no. 3-4, 153–193. MR 781586, DOI 10.1007/BF02392471
- P. Tukia and J. Väisälä, Quasiconformal extension from dimension $n$ to $n+1$, Ann. of Math. (2) 115 (1982), no. 2, 331–348. MR 647809, DOI 10.2307/1971394
- Tom Yau-Heng Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom. 35 (1992), no. 3, 643–657. MR 1163452
- Michael Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449–479. MR 982185
- Michael Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991), no. 2, 487–539. MR 1094467
Bibliographic Information
- Manman Jiang
- Affiliation: Department of Mathematics, Sun Yat-Sen University, 510275, Guangzhou, People’s Republic of China
- Address at time of publication: Guangzhou Maritime University, 510725, Guangzhou, People’s Republic of China
- Email: jiangmanm@126.com
- Lixin Liu
- Affiliation: Department of Mathematics, Sun Yat-Sen University, 510275, Guangzhou, People’s Republic of China
- Email: mcsllx@mail.sysu.edu.cn
- Hongyu Yao
- Affiliation: Department of Mathematics, Sun Yat-Sen University, 510275, Guangzhou, People’s Republic of China
- Received by editor(s): June 27, 2015
- Published electronically: March 19, 2018
- Additional Notes: The work was partially supported by NSFC No. 11271378, No. 11771456
- Communicated by: Michael Wolf
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2853-2865
- MSC (2010): Primary 32G15, 30F30, 30F60
- DOI: https://doi.org/10.1090/proc/13047
- MathSciNet review: 3787348