On projectivized vector bundles and positive holomorphic sectional curvature
HTML articles powered by AMS MathViewer
- by Angelynn Alvarez, Gordon Heier and Fangyang Zheng
- Proc. Amer. Math. Soc. 146 (2018), 2877-2882
- DOI: https://doi.org/10.1090/proc/13868
- Published electronically: March 30, 2018
- PDF | Request permission
Abstract:
We generalize a construction of Hitchin to prove that, given any compact Kähler manifold $M$ with positive holomorphic sectional curvature and any holomorphic vector bundle $E$ over $M$, the projectivized vector bundle ${\mathbb P}(E)$ admits a Kähler metric with positive holomorphic sectional curvature.References
- Angelynn Alvarez, Ananya Chaturvedi, and Gordon Heier, Optimal pinching for the holomorphic sectional curvature of Hitchin’s metrics on Hirzebruch surfaces, Rational points, rational curves, and entire holomorphic curves on projective varieties, Contemp. Math., vol. 654, Amer. Math. Soc., Providence, RI, 2015, pp. 133–142. MR 3477543, DOI 10.1090/conm/654/13219
- M. Berger, Sur les variétés d’Einstein compactes, Comptes Rendus de la IIIe Réunion du Groupement des Mathématiciens d’Expression Latine (Namur, 1965) Librairie Universitaire, Louvain, 1966, pp. 35–55 (French). MR 0238226
- Chi-Keung Cheung, Hermitian metrics of negative holomorphic sectional curvature on some hyperbolic manifolds, Math. Z. 201 (1989), no. 1, 105–119. MR 990192, DOI 10.1007/BF01161998
- Nigel Hitchin, On the curvature of rational surfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 65–80. MR 0400127
- G. Heier and B. Wong, On projective Kähler manifolds of partially positive curvature and rational connectedness, arXiv:1509.02149, 2015.
- Shoshichi Kobayashi and Hung-Hsi Wu, On holomorphic sections of certain hermitian vector bundles, Math. Ann. 189 (1970), 1–4. MR 270392, DOI 10.1007/BF01350196
- Yôtarô Tsukamoto, On Kählerian manifolds with positive holomorphic sectional curvature, Proc. Japan Acad. 33 (1957), 333–335. MR 90845
Bibliographic Information
- Angelynn Alvarez
- Affiliation: Department of Mathematics, The State University of New York at Potsdam, 44 Pierrepont Avenue, Potsdam, New York 13676
- MR Author ID: 1155523
- Email: alvarear@potsdam.edu
- Gordon Heier
- Affiliation: Department of Mathematics, University of Houston, 4800 Calhoun Road, Houston, Texas 77204
- MR Author ID: 697236
- Email: heier@math.uh.edu
- Fangyang Zheng
- Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210 – and – Zhejiang Normal University, Jinhua, 321004, Zhejiang, People’s Republic of China
- MR Author ID: 272367
- Email: zheng.31@osu.edu
- Received by editor(s): June 29, 2016
- Published electronically: March 30, 2018
- Additional Notes: The third-named author was partially supported by a Simons Collaboration Grant
- Communicated by: Lei Ni
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2877-2882
- MSC (2010): Primary 32L05, 32Q10, 32Q15, 53C55
- DOI: https://doi.org/10.1090/proc/13868
- MathSciNet review: 3787350