A $q$-series identity via the $\mathfrak {sl}_3$ colored Jones polynomials for the $(2,2m)$-torus link
HTML articles powered by AMS MathViewer
- by Wataru Yuasa
- Proc. Amer. Math. Soc. 146 (2018), 3153-3166
- DOI: https://doi.org/10.1090/proc/13907
- Published electronically: March 20, 2018
- PDF | Request permission
Abstract:
The colored Jones polynomial is a $q$-polynomial invariant of links colored by irreducible representations of a simple Lie algebra. A $q$-series called a tail is obtained as the limit of the $\mathfrak {sl}_2$ colored Jones polynomials $\{J_n(K;q)\}_n$ for some link $K$, for example, an alternating link. For the $\mathfrak {sl}_3$ colored Jones polynomials, the existence of a tail is unknown. We give two explicit formulas of the tail of the $\mathfrak {sl}_3$ colored Jones polynomials colored by $(n,0)$ for the $(2,2m)$-torus link. These two expressions of the tail provide an identity of $q$-series. This is a knot-theoretical generalization of the Andrews–Gordon identities for the Ramanujan false theta function.References
- George E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082–4085. MR 351985, DOI 10.1073/pnas.71.10.4082
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part I, Springer, New York, 2005. MR 2135178, DOI 10.1007/0-387-28124-X
- George E. Andrews and Kimmo Eriksson, Integer partitions, Cambridge University Press, Cambridge, 2004. MR 2122332, DOI 10.1017/CBO9781139167239
- Cody Armond, The head and tail conjecture for alternating knots, Algebr. Geom. Topol. 13 (2013), no. 5, 2809–2826. MR 3116304, DOI 10.2140/agt.2013.13.2809
- Cody W. Armond, Walks along braids and the colored Jones polynomial, J. Knot Theory Ramifications 23 (2014), no. 2, 1450007, 15. MR 3197051, DOI 10.1142/S0218216514500072
- Cody Armond and Oliver T. Dasbach, Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial, arXiv:1106.3948 (2011).
- Kathrin Bringmann, Jonas Kaszian, and Antun Milas, Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak {sl}_3$ false theta functions, arXiv:1704.06891 (2017).
- Kathrin Bringmann and Antun Milas, $\mathcal W$-algebras, false theta functions and quantum modular forms, I, Int. Math. Res. Not. IMRN 21 (2015), 11351–11387. MR 3456046, DOI 10.1093/imrn/rnv033
- Oliver T. Dasbach and Xiao-Song Lin, On the head and the tail of the colored Jones polynomial, Compos. Math. 142 (2006), no. 5, 1332–1342. MR 2264669, DOI 10.1112/S0010437X06002296
- Oliver T. Dasbach and Xiao-Song Lin, A volumish theorem for the Jones polynomial of alternating knots, Pacific J. Math. 231 (2007), no. 2, 279–291. MR 2346497, DOI 10.2140/pjm.2007.231.279
- Khaled Bataineh, Mohamed Elhamdadi, and Mustafa Hajij, The colored Jones polynomial of singular knots, New York J. Math. 22 (2016), 1439–1456. MR 3603072
- Mohamed Elhamdadi and Mustafa Hajij, Pretzel knots and $q$-series, Osaka J. Math. 54 (2017), no. 2, 363–381. MR 3657236
- Stavros Garoufalidis and Thang T. Q. Lê, Nahm sums, stability and the colored Jones polynomial, Res. Math. Sci. 2 (2015), Art. 1, 55. MR 3375651, DOI 10.1186/2197-9847-2-1
- Stavros Garoufalidis and Thao Vuong, A stability conjecture for the colored Jones polynomial, Topology Proc. 49 (2017), 211–249. MR 3570390
- Mustafa Hajij, The Bubble skein element and applications, J. Knot Theory Ramifications 23 (2014), no. 14, 1450076, 30. MR 3312619, DOI 10.1142/S021821651450076X
- Mustafa Hajij, The tail of a quantum spin network, Ramanujan J. 40 (2016), no. 1, 135–176. MR 3485997, DOI 10.1007/s11139-015-9705-9
- Lawrence Gray, A mathematician looks at S. Wolfram’s new kind of science. Review of: A new kind of science [Wolfram Media, Inc., Champaign, IL, 2002; 1920418], Notices Amer. Math. Soc. 50 (2003), no. 2, 200–211. MR 1951106
- Louis H. Kauffman and Sóstenes L. Lins, Temperley-Lieb recoupling theory and invariants of $3$-manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994. MR 1280463, DOI 10.1515/9781400882533
- Adam Keilthy and Robert Osburn, Rogers-Ramanujan type identities for alternating knots, J. Number Theory 161 (2016), 255–280. MR 3435728, DOI 10.1016/j.jnt.2015.02.002
- Dongseok Kim, Trihedron coefficients for $\scr U_q({\mathfrak {sl}}(3,\Bbb C))$, J. Knot Theory Ramifications 15 (2006), no. 4, 453–469. MR 2221529, DOI 10.1142/S0218216506004579
- Greg Kuperberg, The quantum $G_2$ link invariant, Internat. J. Math. 5 (1994), no. 1, 61–85. MR 1265145, DOI 10.1142/S0129167X94000048
- Greg Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109–151. MR 1403861, DOI 10.1007/BF02101184
- Jeremy Lovejoy and Robert Osburn, The Bailey chain and mock theta functions, Adv. Math. 238 (2013), 442–458. MR 3033639, DOI 10.1016/j.aim.2013.02.005
- James McLaughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan computer searches, J. Symbolic Comput. 44 (2009), no. 8, 1068–1078. MR 2523768, DOI 10.1016/j.jsc.2009.02.003
- H. R. Morton, The coloured Jones function and Alexander polynomial for torus knots, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 129–135. MR 1297899, DOI 10.1017/S0305004100072959
- Tomotada Ohtsuki and Shuji Yamada, Quantum $\textrm {SU}(3)$ invariant of $3$-manifolds via linear skein theory, J. Knot Theory Ramifications 6 (1997), no. 3, 373–404. MR 1457194, DOI 10.1142/S021821659700025X
- Justin Roberts, Skeins and mapping class groups, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 53–77. MR 1253282, DOI 10.1017/S0305004100071917
- L. J. Rogers, Second Memoir on the Expansion of certain Infinite Products, Proc. Lond. Math. Soc. 25 (1893/94), 318–343. MR 1576348, DOI 10.1112/plms/s1-25.1.318
- Marc Rosso and Vaughan Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theory Ramifications 2 (1993), no. 1, 97–112. MR 1209320, DOI 10.1142/S0218216593000064
- L. J. Slater, A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460–475. MR 43235, DOI 10.1112/plms/s2-53.6.460
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147
- V. G. Turaev and O. Ya. Viro, State sum invariants of $3$-manifolds and quantum $6j$-symbols, Topology 31 (1992), no. 4, 865–902. MR 1191386, DOI 10.1016/0040-9383(92)90015-A
- Wataru Yuasa, The $\mathfrak {sl}_3$ colored Jones polynomials for 2-bridge links, J. Knot Theory Ramifications 26 (2017), no. 7, 1750038, 37. MR 3660093, DOI 10.1142/S0218216517500389
Bibliographic Information
- Wataru Yuasa
- Affiliation:
Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku
, Tokyo 152-8551, Japan
- Email: yuasa.w.aa@m.titech.ac.jp
- Received by editor(s): December 21, 2016
- Received by editor(s) in revised form: July 16, 2017, and July 24, 2017
- Published electronically: March 20, 2018
- Communicated by: David Futer
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3153-3166
- MSC (2010): Primary 57M27; Secondary 11P84, 05A30
- DOI: https://doi.org/10.1090/proc/13907
- MathSciNet review: 3787374