The set of stable primes for polynomial sequences with large Galois group
HTML articles powered by AMS MathViewer
- by Andrea Ferraguti
- Proc. Amer. Math. Soc. 146 (2018), 2773-2784
- DOI: https://doi.org/10.1090/proc/13958
- Published electronically: February 16, 2018
- PDF | Request permission
Abstract:
Let $K$ be a number field with ring of integers $\mathcal {O}_K$, and let $\{f_k\}_{k\in \mathbb {N}}$ be a sequence of monic polynomials in $\mathcal {O}_K[x]$ such that for every $n\in \mathbb {N}$, the composition $f^{(n)}=f_1\circ f_2\circ \ldots \circ f_n$ is irreducible. In this paper we show that if the size of the Galois group of $f^{(n)}$ is large enough (in a precise sense) as a function of $n$, then the set of primes $\mathfrak {p}\subseteq \mathcal {O}_K$ such that every $f^{(n)}$ is irreducible modulo $\mathfrak {p}$ has density zero. Moreover, we prove that the subset of polynomial sequences such that the Galois group of $f^{(n)}$ is large enough has density 1, in an appropriate sense, within the set of all polynomial sequences.References
- Laurent Bartholdi, Rostislav Grigorchuk, and Volodymyr Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, pp. 25–118. MR 2091700
- Robert L. Benedetto, Xander Faber, Benjamin Hutz, Jamie Juul, and Yu Yasufuku, A large arboreal galois representation for a cubic postcritically finite polynomial, https://arxiv.org/abs/1612.03358, 2016.
- Nigel Boston and Rafe Jones, Arboreal Galois representations, Geom. Dedicata 124 (2007), 27–35. MR 2318536, DOI 10.1007/s10711-006-9113-9
- Nigel Boston and Rafe Jones, The image of an arboreal Galois representation, Pure Appl. Math. Q. 5 (2009), no. 1, 213–225. MR 2520459, DOI 10.4310/PAMQ.2009.v5.n1.a6
- Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli, Representation theory and harmonic analysis of wreath products of finite groups, London Mathematical Society Lecture Note Series, vol. 410, Cambridge University Press, Cambridge, 2014. MR 3202374, DOI 10.1017/CBO9781107279087
- S. D. Cohen, The distribution of Galois groups and Hilbert’s irreducibility theorem, Proc. London Math. Soc. (3) 43 (1981), no. 2, 227–250. MR 628276, DOI 10.1112/plms/s3-43.2.227
- Andrea Ferraguti and Giacomo Micheli, On the Mertens-Cesàro theorem for number fields, Bull. Aust. Math. Soc. 93 (2016), no. 2, 199–210. MR 3480932, DOI 10.1017/S0004972715001288
- Andrea Ferraguti, Giacomo Micheli, and Reto Schnyder, Irreducible compositions of degree two polynomials over finite fields have regular structure, https://arxiv.org/abs/1701.06040, 2017.
- Andrea Ferraguti, Giacomo Micheli, and Reto Schnyder, On sets of irreducible polynomials closed by composition, Arithmetic of finite fields, Lecture Notes in Comput. Sci., vol. 10064, Springer, Cham, 2016, pp. 77–83. MR 3649090, DOI 10.1007/978-3-319-55227-9_{6}
- D. R. Heath-Brown and Giacomo Micheli, Irreducible polynomials over finite fields produced by composition of quadratics, https://arxiv.org/abs/1701.05031, 2017.
- Rafe Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc. (2) 78 (2008), no. 2, 523–544. MR 2439638, DOI 10.1112/jlms/jdn034
- Rafe Jones, An iterative construction of irreducible polynomials reducible modulo every prime, J. Algebra 369 (2012), 114–128. MR 2959789, DOI 10.1016/j.jalgebra.2012.05.020
- Rafe Jones, Galois representations from pre-image trees: an arboreal survey, Actes de la Conférence “Théorie des Nombres et Applications”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2013, Presses Univ. Franche-Comté, Besançon, 2013, pp. 107–136 (English, with English and French summaries). MR 3220023
- Rafe Jones and Michelle Manes, Galois theory of quadratic rational functions, Comment. Math. Helv. 89 (2014), no. 1, 173–213. MR 3177912, DOI 10.4171/CMH/316
- Jamie Juul, Pär Kurlberg, Kalyani Madhu, and Tom J. Tucker, Wreath products and proportions of periodic points, Int. Math. Res. Not. IMRN 13 (2016), 3944–3969. MR 3544625, DOI 10.1093/imrn/rnv273
- R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. (3) 51 (1985), no. 3, 385–414. MR 805714, DOI 10.1112/plms/s3-51.3.385
- R. W. K. Odoni, On the prime divisors of the sequence $w_{n+1}=1+w_1\cdots w_n$, J. London Math. Soc. (2) 32 (1985), no. 1, 1–11. MR 813379, DOI 10.1112/jlms/s2-32.1.1
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, 3rd ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt; With a foreword by Brown and Serre. MR 1757192, DOI 10.1007/978-3-663-10632-6
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Michael Stoll, Galois groups over $\textbf {Q}$ of some iterated polynomials, Arch. Math. (Basel) 59 (1992), no. 3, 239–244. MR 1174401, DOI 10.1007/BF01197321
Bibliographic Information
- Andrea Ferraguti
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, DPMMS, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
- MR Author ID: 1156160
- Email: af612@cam.ac.uk
- Received by editor(s): April 25, 2017
- Received by editor(s) in revised form: September 14, 2017
- Published electronically: February 16, 2018
- Additional Notes: The author was supported by Swiss National Science Foundation grant number 168459.
- Communicated by: Matthew A. Papanikolas
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 2773-2784
- MSC (2010): Primary 11R32, 11R45, 20E08
- DOI: https://doi.org/10.1090/proc/13958
- MathSciNet review: 3787342