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ON SOME POLYNOMIALS AND SERIES

OF BLOCH–PÓLYA TYPE

ALEXANDER BERKOVICH AND ALI KEMAL UNCU

(Communicated by Ken Ono)

Abstract. We will show that (1 − q)(1 − q2) . . . (1 − qm) is a polynomial
in q with coefficients from {−1, 0, 1} iff m = 1, 2, 3, or 5 and explore some
interesting consequences of this result. We find explicit formulas for the q-series

coefficients of (1−q2)(1−q3)(1−q4)(1−q5) . . . and (1−q3)(1−q4)(1−q5)(1−
q6) . . . . In doing so, we extend certain observations made by Sudler in 1964.
We also discuss the classification of the products (1 − q)(1 − q2) . . . (1 − qm)
and some related series with respect to their absolute largest coefficients.

1. Introduction and background

Polynomials with coefficients from the set {−1, 0, 1} were first studied by Bloch
and Pólya [4]. Their study sparked interest especially about the roots of these
polynomials. An interested reader may refer to these prominent results (listed in
order of publication) [9], [5], [8], and [6]. The first two references focus on Littlewood
polynomials, i.e., polynomials where all coefficients are ±1. In the same spirit, we
would like to call polynomials (and series) with integer coefficients from the set
{−1, 0, 1} Bloch–Pólya type polynomials (and series, resp.).

We start by defining a q-Pochhammer symbol or a rising q-factorial. For variables
a, q, and a non-negative integer L, we define

(a; q)L =

L−1∏
i=0

(1− aqi),

(a; q)∞ = lim
L→∞

(a; q)L, for |q| < 1.

The rising q-factorials have been studied extensively; one notable example is
Euler’s Pentagonal Number Theorem [2, Cor. 1.7, pg. 11].
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Theorem 1.1 (Euler’s Pentagonal Number Theorem, 1750). We have the identity

(q; q)∞ =
∞∑

n=−∞
(−1)nqn(3n−1)/2

(1.1)

= 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + q51 + q57 − q70 . . . .

The identity (1.1) shows that the q-Pochhammer symbol (q; q)∞ can be repre-
sented as Bloch–Pólya type series.

We will also require the q-binomial theorem [2, Thm. 2.1, p. 17]:

Theorem 1.2 (q-Binomial Theorem). We have

(1.2)
∑
n≥0

(a; q)n
(q; q)n

tn =
(ta; q)∞
(t; q)∞

.

Next, we define the following family of sums:

Fk,M (q) :=
M∑
j=0

qkj(q; q)j ,(1.3)

Fk(q) := lim
M→∞

Fk,M (q) =
∑
j≥0

qkj(q; q)j ,(1.4)

for positive integers k and M . The series Fk(q) can be made convergent by picking
|q| < 1.

These series were introduced by Eden, and they are closely related to the theory
of partitions. Eden observed that

(−q)kFk(q) =
∑

n,m>0

(−1)mpk(n,m)qn,

where pk(n,m) is the number of non-empty partitions of n into exactly m parts
where the largest part appears k times and all the other parts appear distinctly [7].
Moreover, the series F1(q) plays an instrumental role in Euler’s original proof of
Theorem 1.1 [1]. Recently Fi,M (q) for i = 1, 2, and 3 arose naturally in our studies
of partitions with bounded gaps between largest and smallest parts [3].

In the following sections, among other observations, we will prove the next two
theorems.

Theorem 1.3. For m ∈ Z≥0, (q; q)m is of Bloch–Pólya type iff m = 0, 1, 2, 3, or
5.

Theorem 1.4. For k ≥ 7, there is no polynomial f(q) such that Fk(q)+ f(q) is of
Bloch–Pólya type.

C. Sudler, in his 1964 papers [10,11], studied the maximum coefficient a∗m of the
power series expansion of (q; q)m. He noted that a∗m is unbounded as m gets larger
using a special case of Theorem 1.2 and that log a∗m ∼ Km where K > 0 using
Cauchy’s integral formula in the respective papers. The unboundedness of a∗m was
shown by observing that (q3; q)∞ has unbounded q-series coefficients.

In Section 2, we start with some observations about pentagonal numbers. After
that we give explicit formulas for the qj ’s coefficient in the power series of both
(q2; q)∞ and (q3; q)∞, for any j ∈ Z≥0. This section is finalized with a proof
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of Theorem 1.3. Section 3 starts by proving a recurrence relation for Fk,M (q)
polynomials, and the rest of the section deals with Bloch–Pólya properties of Fk(q)
series. We discuss the classification of the polynomials (q; q)m and the series Fk(q)
with respect to their coefficients in a broader perspective than the Bloch–Pólya
property in Section 4.

2. q-series coefficients of (q; q)m, (q2; q)∞, and (q3; q)∞.

Proof of Theorem 1.3

We start by observing that the minimum gap between pentagonal numbers in-
crease. An alternative way of writing Theorem 1.1 is

(q; q)∞ = 1 +

∞∑
n=1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2).

Let

(2.1) p1(n) :=
n(3n− 1)

2
and p2(n) :=

n(3n+ 1)

2

be the two families of pentagonal numbers for n ≥ 0. Observe that there is a
natural order between these families:

0 = p1(0) = p2(0) < 1 = p1(1) < 2 = p2(1) < 5(2.2)

= p1(2) < · · · < p1(n) < p2(n) < p1(n+ 1) < · · ·
for any n ≥ 1. Also note that

(2.3) p2(n)− p1(n) = n and p1(n+ 1)− p2(n) = 2n+ 1.

This proves that

Lemma 2.1. For any M > 0 the gap between successive pentagonal numbers is

p2(n)− p1(n) > M and p1(n+ 1)− p2(n) > M,

for all n > M .

We will use Lemma 2.1 to find a suitable separation point for the tail of the
series (1.1) in the following theorems.

Theorem 2.2. The power series of

(q2; q)∞ :=
∑
j≥0

ajq
j

is of Bloch–Pólya type. Furthermore, for any j ∈ Z≥0 there exist a unique n ∈ Z≥0

such that

p2(2n) ≤ j < p2(2n+ 2)

and

(2.4) aj =

⎧⎨
⎩

1, if p2(2n) ≤ j < p1(2n+ 1),
−1, if p2(2n+ 1) ≤ j < p1(2n+ 2),
0, otherwise.

Proof. We start with

(2.5) (q2; q)∞ =
(q; q)∞
1− q

= (1+q+q2+q3+· · · )(1−q−q2+q5+q7−q12−q15+· · · ),
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which is clear by geometric series and Theorem 1.1. Openly evaluating the latter
product is enough to demonstrate this result:

(q
2
; q)∞ = (1 + q + q

2
+ q

3
+ q

4
+ q

5
+ . . . )(1 − q − q

2
+ q

5
+ q

7 − q
12 − q

15
+ q

22
+ q

26 − q
35 − . . . )

= 1 + q + q
2
+ q

3
+ q

4
+ q

5
+ q

6
+ q

7
+ q

8
+ q

9
+ q

10
+ q

11
+ q

12
+ q

13
+ q

14
+ q

15
+ q

16
+ q

17
. . .

− q − q
2 − q

3 − q
4 − q

5 − q
6 − q

7 − q
8 − q

9 − q
10 − q

11 − q
12 − q

13 − q
14 − q

15 − q
16 − q

17
. . .

− q
2 − q

3 − q
4 − q

5 − q
6 − q

7 − q
8 − q

9 − q
10 − q

11 − q
12 − q

13 − q
14 − q

15 − q
16 − q

17
. . .

+ q
5
+ q

6
+ q

7
+ q

8
+ q

9
+ q

10
+ q

11
+ q

12
+ q

13
+ q

14
+ q

15
+ q

16
+ q

17
. . .

+ q
7
+ q

8
+ q

9
+ q

10
+ q

11
+ q

12
+ q

13
+ q

14
+ q

15
+ q

16
+ q

17
. . .

− q
12 − q

13 − q
14 − q

15 − q
16 − q

17
. . .

− q
15 − q

16 − q
17

. . .

= 1 − q
2 − q

3 − q
4

+ q
7
+ q

8
+ q

9
+ q

10
+ q

11 − q
15 − q

16 − q
17

. . . .

The sign changes at every other non-zero coefficient term in the pentagonal
numbers series (1.1) make sure that the coefficients of (2.5) are in the set {−1, 0, 1}
when (q; q)∞ is divided by (1− q).

With the 0 coefficients explicitly written, we have

(2.6) (q2; q)∞ = 1+0 q−q2−q3−q4+0 q5+0 q6+q7+q8+q9+q10+q11+0 q12 . . . .

For n ≥ 1, it is clear that the n-th non-zero coefficient block starts at p2(n− 1).
This block is of the size 2n − 1, and its coefficients are all (−1)n+1. Moreover, a
zero coefficient block of size n follows the n-th non-zero coefficient block. �

Next we observe that for n ≥ 0 and r = 0, 1,

(2.7)
∑

2j+r∈In

a2j+r = −1,

where In := {p2(2n), . . . , p1(2n + 2) − 1} and aj is as in Theorem 2.2. It is clear
that the number of −1 coefficients aj in p2(2n) to p1(2n+2)− 1 is 2 more than the
+1 coefficients. This observation is true due to the number of zero coefficients in
this interval being an odd number. Another way of seeing this is to observe p2(2n)
and p2(2n+ 1) having the same parity, for n ≥ 0.

Let

(2.8) (q3; q)∞ =
∑
i≥0

biq
i

be the power series representation. Since (q3; q)∞ = (q2; q)∞/(1 − q2), it is clear
that

bi =
∑
j≥0

i−2j≥0

ai−2j ,

where aj is as in Theorem 2.2. With that, one can prove the following.

Theorem 2.3. For every integer i ≥ 0, let bi be as in (2.8). There exists a unique
integer n ≥ 0 such that

p1(2n)− 2 ≤ i ≤ p1(2n+ 2)− 3.
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Then, the power series coefficients bi of (q
3; q)∞ are given explicitly by

bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−n, if p1(2n)− 2 ≤ i ≤ p2(2n)− 1,

1− n+ � i−p2(2n)
2 �, if p2(2n) ≤ i ≤ p1(2n+ 1)− 2,

1 + n, if p1(2n+ 1)− 1 ≤ i ≤ p2(2n+ 1)− 2

and i ≡ p2(2n) (mod 2),

n, if p1(2n+ 1)− 1 ≤ i ≤ p2(2n+ 1)− 2

and i 	≡ p2(2n) (mod 2),

n− 
 i−p2(2n+1)
2 �, if p2(2n+ 1)− 1 ≤ i ≤ p1(2n+ 2)− 3,

where �x� is the greatest integer ≤ x, and 
x� is the smallest integer ≥ x.

As an example, if i = 10100, then

n = 40824829046386301636621401245098189866099124677611.

Moreover, for this particular i the second case of the formula above applies. Hence,
after the addition of three numbers we get

bi = −19888090251390639910818356938628130689602741018379.

Theorem 2.3 already says that series expansion of (q3; q)∞ is not of Bloch–Pólya
type. Moreover, every integer occurs as a coefficient of (q3; q)∞ infinitely many
times. For illustrative purposes, some first appearances of non-zero coefficient sizes
are
(2.9)
(q3; q)∞=1+· · ·+2q11+· · ·+3q34+· · ·+4q69+· · ·+5q116+· · ·+6q175+· · ·+7q246+. . . .

We remark that Euler’s Pentagonal Number Theorem (Theorem 1.1) has a
partition-theoretic interpretation; that is, a finite sequence π = (λ1, λ2, . . . ) of
non-increasing positive integers is called a partition. Let D be the set of partitions
into distinct parts (i.e., λi 	= λj for i 	= j), let ν(π) be the number of parts of
partition π, and let |π| be the sum of all the parts of π. The empty sequence is the
unique partition of zero. Then (1.1) can be interpreted as

(q; q)∞ =
∑
n≥0

⎛
⎜⎜⎝

∑
π∈D
|π|=n

(−1)ν(π)

⎞
⎟⎟⎠ qn.

Similar to this interpretation one can also interpret Theorems 2.2 and 2.3 as parti-
tion theorems.

Theorem 2.4. We have

aj =
∑
π∈D
|π|=j
s(π)>1

(−1)ν(π) and bi =
∑
π∈D
|π|=i
s(π)>2

(−1)ν(π),

where s(π) is the smallest part of partition π, and aj and bi are defined as in
Theorems 2.2 and 2.3.

Now we can give an easy proof of Theorem 1.3. To this end, we will define
�qi�f(q) to be the qi’s coefficient in the power series expansion of f(q).
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Proof. Proof of Theorem 1.3. Initial cases of q-factorials can easily be checked to
be Bloch–Pólya type polynomials for m = 0 to 5, except for m = 4:

(q; q)0 = 1,

(q; q)1 = 1− q,

(q; q)2 = 1− q − q2 + q3,

(q; q)3 = 1− q − q2 + q4 + q5 − q6,

(q; q)4 = 1− q − q2 + 2 q5 − q8 − q9 + q10,

(q; q)5 = 1− q − q2 + q5 + q6 + q7− q8− q9− q10+ q13 + q14 − q15.

It is clear that �q5�(q; q)4 = 2. Also observe that

�q7�(q; q)6 = 2,

�q12�(q; q)m = −2, for 7 ≤ m ≤ 9,

�q15�(q; q)10 = −2,

−3 ≤ �q2m+22�(q; q)m ≤ −2, for 11 ≤ m ≤ 20.

Another example that will come in handy is

�q51�(q; q)41 = 2.(2.10)

For some m ≥ 1, choose (a, q, t) = (0, q, qm) in the q-binomial theorem (1.2).
Multiplying both sides of this special case with (q; q)∞, one can easily show that

(2.11) (q; q)m−1 =
∑
i≥0

qmi(qi+1; q)∞ = (q; q)∞ + qm(q2; q)∞ + q2m(q3; q)∞ . . . .

Note that for any 2m ≤ n < 3m the contribution for the coefficient of qn of
(q; q)m−1 comes only from the first three terms of the expansion in (2.11). Keeping
(2.9) in mind, for m > 69 one can deduce that

2 ≤ �q2m+69�(q; q)m−1 ≤ 6,

since the coefficients of q2m+69 and qm+69 of (q; q)∞ and (q2; q)∞ are in the set
{−1, 0, 1} by Theorem 1.1 and Theorem 2.2, respectively. We can now directly
verify the claim for the intermediate interval of unchecked m values (m ≥ 22 and
the inequality 2m ≤ 2m+ 69 < 3m does not hold) that

2 ≤ �q2m+69�(q; q)m−1 ≤ 12 for 22 ≤ m ≤ 69 and m 	= 42.

Recall that the m = 42 case was handled in (2.10) above. �

3. Recurrence relations for Fk,M (q) and a proof of Theorem 1.4

We start by the recurrence relations for the Fk,M (q) functions.

Lemma 3.1. For k ≥ 1,

qk+1Fk+1,M (q) = 1 + (qk − 1)Fk,M (q)− qk(M+1)(q; q)M+1.
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Proof. Observe that

(qk − 1)Fk,M (q) =
M+1∑
n=1

qkn(q; q)n−1 −
M∑
n=0

qkn(q; q)n

= qk+1Fk+1,M−1(q) + qk(M+1)(q; q)M − 1.

Adding q(k+1)(M+1)(q; q)M , we get the term qk+1Fk+1,M (q) on the right side of the
equation. Isolating this term yields the result. �

Let D1,k be the set of non-empty partitions into distinct parts congruent to 1
modulo k, and let ν(π) be the number of parts of the partition π. We note that

(3.1)
∑

π∈D1,k

l(π)≤kM+1

(−1)ν(π)+1q|π| =
M∑
j=0

qkj+1(q; qk)j = 1− (q; qk)M+1,

where l(π) is the largest part of π.
The q-factorial (q; qk)M+1 is the generating function for the partitions π∗ into

distinct parts ≤ kM + 1, each 1 modulo k, counted with the weights (−1)ν(π
∗).

The summand of the middle term of (3.1) is the generating function for partitions
into distinct parts, each 1 modulo k counted with the weight (−1)ν(π)+1 where the
largest part is jk + 1. Summing from j = 0 to M , we get the generating function
for the number of partitions into distinct parts ≤ kM + 1, each 1 modulo k. This
justifies the first equality of (3.1). The second equality can also be clarified in the
same manner. We multiply (q; qk)M+1 by −1 to match the weight (−1)ν(π)+1 and
add 1 to remove the empty partition from our calculations.

We will later refer to this special case of (3.1), where k is 1:

(3.2) qF1,M (q) =

M∑
j=0

qj+1(q; q)j = 1− (q; q)M+1.

This special case also appears in [1, (5)].
Now we can prove some results about the coefficients of Fi(q) functions.

Theorem 3.2.

(i) F1(q) is of Bloch–Pólya type.
(ii) F2(q) is of Bloch–Pólya type.
(iii) F3(q)− q9 and F4(q)− q16 + q18 + q30 − q31 are both of Bloch–Pólya type.
(iv) F5(q) is not a Bloch–Pólya type series, and there is no polynomial f(q) such

that F5(q) + f(q) is one.
(v) F6(q)− f6(q) is a Bloch–Pólya type series, where

f6(q) := q29 − q32 + q36 − q38 + q43 − q45 + q50 − q56 + q57 + q58 − q62 − q63 + q64

+ q71 − q80 − q81 + q84 + q85 + q106 − q110 − q239 + q241 + q280 − q281.

(vi) And for k ≥ 7, there is no polynomial f(q) such that Fk(q) + f(q) is of
Bloch–Pólya type.

Item (vi) of Theorem 3.2 is the earlier highlighted Theorem 1.4.
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Proof. (i) Taking the limit M → ∞ on the extreme sides of (3.2), combined
with (1.1), we have

(3.3) qF1(q) = 1− (q; q)∞ = q + q2 − q5 − q7 + q12 + q15 . . . .

This is enough to show that F1(q) is of Bloch–Pólya type.

The proofs of cases (ii) and (iii) will rely on a combination of Theo-
rem 1.1, Theorem 1.3, Lemma 2.1, and Lemma 3.1 with M → ∞. The
combination of Lemma 3.1 with M → ∞, together with (3.3), yields

(3.4) qk(k+1)/2Fk(q) =

k−1∑
i=0

(−1)i(qk−i; q)iq
(k−1−i)(k−i)/2 + (−1)k(q; q)k−1(q; q)∞,

for k ≥ 1.
(ii) The difference between successive pentagonal numbers (which appear in the

exponent of q) is greater than 1 for exponents of q greater than or equal to
p1(2) = 5, by Lemma 2.1. Therefore, the series q5 + q7 − q12 − q15 . . . and
q(q5+ q7− q12− q15 . . . ) = q6+ q8− q13− q16 . . . do not share any common
exponents of q. Hence, their difference (1−q)(q5+q7−q12−q15 . . . ) has all
the exponents of q greater than or equal to 5, and it remains a Bloch–Pólya
type series.

Using (3.4), we get

q3F2(q) = −1 + 2q + (1− q)(q; q)∞.

Using (1.1) once again

q3F2(q) = −1 + 2q + (1− q)(1− q − q2 + q5 + q7 − q12 − q15 . . . )

= −1 + 2q + (1− q)(1− q − q2) + (1− q)(q5 + q7 − q12 − q15 . . . )

= q3 + (1− q)(q5 + q7 − q12 − q15 . . . ).

The above lines with the previous observation show that q3F2(q) is of
Bloch–Pólya type. One can divide the series expansions of q3F2(q) with q3

to show the claimed results.
(iii) For k ≥ 3, one gets power series coefficients with modulus ≥ 2 in the

expansion of Fk(q), but in the initial cases there are only finitely many
exceptions which can be corrected. Using (3.4), we get

q6F3(q) = q3 − q(1− q2) + (q; q)2 − (q; q)2(q; q)∞

= 1− 2q − q2 + 3q3 − (1− q − q2 + q3)(q; q)∞,

q10F4(q) = q6 − q3(1− q3) + q(1− q2)(1− q3)− (q; q)3 + (q; q)3(q; q)∞

= −1 + 2q + q2 − 2q3 − 2q4 − q5 + 4q6 + (1− q − q2 + q4 + q5 − q6)(q; q)∞.

The q-factorials (q; q)2 and (q; q)3 have degrees 3 and 6, respectively.
Differences between the pentagonal numbers are larger than 3 and 6 starting
from the pentagonal numbers 22 and 70 by Lemma 2.1. Using Theorem 1.1
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and splitting the series at these pentagonal numbers we get

q6F3(q) =q6 + q9 − q10 + q12 − q13 − q14 + 2q15 − q16 − q17 + q18
(3.5)

− (q; q)2(q
22 + q26 − q35 − q40 + q51 . . . ),

q10F4(q) =q10 + q14 − q15 + q18 − q19 − q20 + q21 + q22 − q23 − q24 + 2q26 − 2q28
(3.6)

+ q30 + q31 − q32 − q35 + q36 + q37 − q39 − 2q40 + 2q41 + q42 − q44

− q45 + q46 + q51 − q52 − q53 + q55 + q56 − q58 − q59 + q61 + q62 − q63

− (q; q)3(q
70 + q77 − q92 − q100 + q117 . . . ).

The fact that (q; q)2 and (q; q)3 are of Bloch–Pólya type ensures that the
tail ends of (3.5) and (3.6) are of Bloch–Pólya type. The explicit equations
(3.5) and (3.6) are enough to prove the claims. All one needs to do is to
divide both sides of these equations with q6 and q10, respectively, and add
in the claimed correction factors.

(iv) The argument for non-zero coefficients being ±1 for the tail end can be
used in the opposite direction as well. By (3.4) we get q15F5(q) = · · · −
(q; q)4(q; q)∞. This implies that

(3.7) F5(q) = P (q) + (q; q)4(q
161 + q172 − q195 − q207 . . . ),

where P (q) is a polynomial of degree 150. Since (q; q)4 = 1− q− q2+2q5−
q8− q9+ q10, the tail of (3.7) cannot be of Bloch–Pólya type. Hence, F5(q)
is neither Bloch–Pólya type series nor can it be made to be one by adding
a polynomial correction term.

(v) Similar to cases (i)-(iii), as (q; q)5 is a Bloch–Pólya polynomial, one can
conclude that F6(q), subject to a polynomial correction term f6(q), can be
made a Bloch–Pólya type series. More precisely,

F6(q)− f6(q) = Q(q) + (q; q)5(q
355 + q371 − q404 − q421 . . . ),

where Q(q) is a Bloch–Pólya polynomial of degree 339.
(vi) (Proof of Theorem 1.4.) By Theorem 1.3 we know that (q; q)k−1 is not of

Bloch–Pólya type for k ≥ 7. Hence, following the steps of case (iv), the tail
of Fk(q) for k ≥ 7 cannot be of Bloch–Pólya type. That implies that for
k ≥ 7, Fk(q) is neither itself Bloch–Pólya nor can it be corrected to be one
by an addition of a polynomial.

�

4. Further observations

Another topic to address is the classification of (q; q)m polynomials with coeffi-
cients from the set {−h,−h + 1, . . . , h − 1, h}, for any positive integer h. Let Sh

be the set of all the m values such that the coefficients of (q; q)m lie in between −h
and h, where at least one coefficient has the absolute value h. We already proved
that S1 = {0, 1, 2, 3, 5} using (2.11). This argument can be repeated to find all Sh

for h ≥ 2. As an example, from (2.9), it is easy to see that for all m > 116,

3 ≤ �q2m+116�(q; q)m−1 ≤ 7.
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Therefore, m = 116 is the cut-off point for S2, and one only needs to check m ≤ 116
manually to find all m values in S2. The general formula for the cut-off points for
Sh are

p1(2h+ 5)− 1 = (h+ 2)(6h+ 17),

where p1(n) is defined as in (2.1).
We display more sets, which are confirmed, and their related cut-off points in

Table 1.

Table 1. List of Sh for h = 1 . . . 40 with the cut-off values of m.

h Sh Cut-off h Sh Cut-off h Sh Cut-off h Sh Cut-off
1 {0, 1, 2, 3, 5} 69 11 {23} 1079 21 {27} 3289 31 ∅ 6699
2 {4, 6, 7, 8, 9, 11} 116 12 ∅ 1246 22 ∅ 3576 32 ∅ 7106
3 {10, 13, 14} 175 13 ∅ 1425 23 ∅ 3875 33 ∅ 7525
4 {12, 15} 246 14 ∅ 1616 24 ∅ 4186 34 {30} 7956
5 {17} 329 15 ∅ 1819 25 ∅ 4509 35 ∅ 8399
6 {16, 18} 424 16 {24, 25} 2034 26 ∅ 4844 36 ∅ 8854
7 {19} 531 17 ∅ 2261 27 ∅ 5191 37 ∅ 9321
8 {20, 21} 650 18 ∅ 2500 28 {28} 5550 38 ∅ 9800
9 ∅ 781 19 {26} 2751 29 {29} 5921 39 ∅ 10291
10 {22} 924 20 ∅ 3014 30 ∅ 6304 40 ∅ 10794

The data in Table 1 is consistent with the following.

Conjecture 4.1. Either
Sh = ∅ or Sh = {i(h)},

for h > 16, where i(h) is a positive integer, and

i(h1) > i(h2) when h1 > h2 > 16.

Moreover, for h > 5, the set

S1 ∪ S2 ∪ · · · ∪ Sh = {0, 1, 2, . . . ,M(h)}
consists of all consecutive integers from 0 up to some positive M(h).

Similarly, one can also define the set Ŝh for the series Fk(q). Let Ŝh be the set
of positive integers k such that Fk(q) has its coefficients from the set {−h, . . . , h},
where at least one coefficient has the absolute value h. Theorem 3.2 shows that
1, 2 ∈ Ŝ1 and 3, 4, 6 ∈ Ŝ2. Moreover, similarly to the proof of Theorem 3.2, using
Lemma 2.1, we can easily find the cut-off points, making sure that the pentagonal
numbers are farther apart from the degree of (q; q)k−1. Using this cut-off point,

one can identify which Ŝh set Fk(q) lies in by looking at the initial coefficients of
Fk(q) and the coefficients of (q; q)k−1. For example, recall (3.7),

F5(q) = P (q) + (q; q)4(q
161 + q172 − q195 − q207 . . . ),

where
P (q) = 1 + q5 + · · · − 2q21 + · · ·+ 3q30 + · · ·+ q150.

The polynomial P (q) has all of its coefficients between −2 and 3. There is more
than a 10 difference between all the exponents of q with non-zero coefficients in the
Bloch–Pólya type series q161 + q172 − q195 − q207 . . . . The polynomial (q; q)4 has
degree 10, and its largest absolute coefficient is 2. Hence, (q; q)4(q

161+q172−q195−
q207 . . . ) is a series with all its coefficients from the set {−2, . . . , 2}. Comparing the
P (q) polynomial and the tail end of F5(q) we deduce that the maximum absolute
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coefficient of F5(q) is 3. Therefore, 5 ∈ Ŝ3. In general, it is sufficient to check the
coefficients of Fk(q) until the exponent

p1(k(k − 1)/2 + 1)− k =
(k − 1)(3k3 − 3k2 + 10k − 8)

8

to classify its respective Ŝh set, where p1(n) is defined as in (2.1). This bound is
used in comparison with the coefficients of (q; q)k−1, which appear repeatedly as
shifted copies in the tail end of Fk(q), with the initial coefficients of Fk(q).

We give a list of confirmed Ŝh sets in Table 2.

Table 2. List of Ŝh for h = 1 . . . 42.

h Ŝh h Ŝh h Ŝh h Ŝh h Ŝh h Ŝh h Ŝh

1 {1, 2} 7 {11, 14} 13 ∅ 19 ∅ 25 ∅ 31 ∅ 37 {25}
2 {3, 4, 6} 8 {13, 15} 14 {18} 20 ∅ 26 ∅ 32 ∅ 38 ∅
3 {5, 8} 9 ∅ 15 {19} 21 ∅ 27 ∅ 33 ∅ 39 ∅
4 {7, 9} 10 ∅ 16 ∅ 22 ∅ 28 ∅ 34 ∅ 40 ∅
5 ∅ 11 {16} 17 {20} 23 ∅ 29 {23} 35 ∅ 41 ∅
6 {10, 12} 12 {17} 18 {21} 24 {22} 30 {24} 36 ∅ 42 {26}
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