Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of temporal homogeneity for additive processes


Author: Masaaki Tsuchiya
Journal: Proc. Amer. Math. Soc. 146 (2018), 3575-3582
MSC (2010): Primary 60G51
DOI: https://doi.org/10.1090/proc/13652
Published electronically: April 17, 2018
MathSciNet review: 3803681
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, temporal homogeneity of an $ \mathbb{R}^{d}$-valued additive process is studied. When an additive process has the stationary independent increments property, the process is called a temporally homogeneous additive process or Lévy process. Moreover, an additive process is said to have the independent increments property in a strong sense if the process has the independent increments property at every finite stopping time (that is, its increments starting at any finite stopping time and events before the stopping time are independent). This paper shows that if an additive process has the independent increments property in a strong sense, then the process is temporally homogeneous, provided the process is immediately random. In particular, in the case of additive processes with Poisson distributed independent increments, it follows that, under some non-degeneracy conditions, the temporal homogeneity is equivalent to the independent increments property at the first jumping time and that, in the degenerate cases, whether each process has the independent increments property at the first jumping time is determined.


References [Enhancements On Off] (What's this?)

  • [1] Kiyosi Itô, Stochastic processes, Springer-Verlag, Berlin, 2004. Lectures given at Aarhus University; Reprint of the 1969 original; Edited and with a foreword by Ole E. Barndorff-Nielsen and Ken-iti Sato. MR 2053326
  • [2] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 1987. MR 959133
  • [3] R. Sh. Liptser and A. N. Shiryayev, Theory of martingales, Mathematics and its Applications (Soviet Series), vol. 49, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by K. Dzjaparidze [Kacha Dzhaparidze]. MR 1022664
  • [4] Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357
  • [5] Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
  • [6] K. Sato, Types of additive processes, Infinitely Divisible Processes and Related Topics (20): Cooperative Research Report 352, 2016, pp. 4-17, The Institute of Statistical Mathematics
  • [7] K. Sato, Private communication, 2016.2.18

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60G51

Retrieve articles in all journals with MSC (2010): 60G51


Additional Information

Masaaki Tsuchiya
Affiliation: School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
Email: mtsuchiya02@yahoo.co.jp

DOI: https://doi.org/10.1090/proc/13652
Received by editor(s): June 27, 2016
Received by editor(s) in revised form: December 30, 2016, and January 6, 2017
Published electronically: April 17, 2018
Communicated by: Mark M. Meerschaert
Article copyright: © Copyright 2018 American Mathematical Society