$L^p$ almost conformal isometries of Sub-Semi-Riemannian metrics and solvability of a Ricci equation
HTML articles powered by AMS MathViewer
- by Erwann Delay
- Proc. Amer. Math. Soc. 146 (2018), 3499-3507
- DOI: https://doi.org/10.1090/proc/13898
- Published electronically: May 2, 2018
- PDF | Request permission
Abstract:
Let $M$ be a smooth compact manifold without boundary. We consider two smooth Sub-Semi-Riemannian metrics on $M$. Under suitable conditions, we show that they are almost conformally isometric in an $L^p$ sense. Assume also that $M$ carries a Riemannian metric with parallel Ricci curvature. Then an equation of Ricci type is solvable in a specific sense, without assuming any proximity to a special metric.References
- Alfred Baldes, Nonexistence of Riemannian metrics with prescribed Ricci tensor, Nonlinear problems in geometry (Mobile, Ala., 1985) Contemp. Math., vol. 51, Amer. Math. Soc., Providence, RI, 1986, pp. 1–8. MR 848927, DOI 10.1090/conm/051/848927
- Ph. Delanoë, Obstruction to prescribed positive Ricci curvature, Pacific J. Math. 148 (1991), no. 1, 11–15. MR 1091527
- Ph. Delanoë, Local solvability of elliptic, and curvature, equations on compact manifolds, J. Reine Angew. Math. 558 (2003), 23–45. MR 1979181, DOI 10.1515/crll.2003.041
- Erwann Delay, Inversion d’opérateurs de courbure au voisinage de la métrique euclidiennne, bull. Soc. Math. France, à paraître, hal-00973138.
- Erwann Delay, Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 2, 521–538 (French, with English and French summaries). MR 3669505
- Erwann Delay, Étude locale d’opérateurs de courbure sur l’espace hyperbolique, J. Math. Pures Appl. (9) 78 (1999), no. 4, 389–430 (French, with English and French summaries). MR 1696358, DOI 10.1016/S0021-7824(99)00014-8
- Erwann Delay, Studies of some curvature operators in a neighborhood of an asymptotically hyperbolic Einstein manifold, Adv. Math. 168 (2002), no. 2, 213–224. MR 1912132, DOI 10.1006/aima.2001.2048
- Erwann Delay and Marc Herzlich, Ricci curvature in the neighborhood of rank-one symmetric spaces, J. Geom. Anal. 11 (2001), no. 4, 573–588. MR 1861296, DOI 10.1007/BF02930755
- Dennis M. DeTurck, Existence of metrics with prescribed Ricci curvature: local theory, Invent. Math. 65 (1981/82), no. 1, 179–207. MR 636886, DOI 10.1007/BF01389010
- Dennis DeTurck and Hubert Goldschmidt, Metrics with prescribed Ricci curvature of constant rank. I. The integrable case, Adv. Math. 145 (1999), no. 1, 1–97. MR 1699229, DOI 10.1006/aima.1998.1810
- Dennis M. DeTurck, Prescribing positive Ricci curvature on compact manifolds, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), no. 3, 357–369 (1986). MR 884866
- Dennis M. DeTurck and Jerry L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 249–260. MR 644518
- Dennis M. DeTurck and Norihito Koiso, Uniqueness and nonexistence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 351–359 (English, with French summary). MR 779873
- Richard Hamilton, The Ricci curvature equation, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 47–72. MR 765228, DOI 10.1007/978-1-4612-1110-5_{4}
- André Lichnerowicz, Propagateurs et commutateurs en relativité générale, Inst. Hautes Études Sci. Publ. Math. 10 (1961), 56 (French). MR 157736
- Artem Pulemotov, Metrics with prescribed Ricci curvature near the boundary of a manifold, Math. Ann. 357 (2013), no. 3, 969–986. MR 3118621, DOI 10.1007/s00208-013-0929-y
- A. Pulemotov and Y.A. Rubinstein, Ricci iteration on homogeneous spaces, arXiv:1606.05064 [math.DG] (2016).
- H. Wu, Holonomy groups of indefinite metrics, Pacific J. Math. 20 (1967), 351–392. MR 212740
Bibliographic Information
- Erwann Delay
- Affiliation: Laboratoire de Mathématiques d’Avignon (EA 2151), Université d’Avignon, 301 rue Baruch de Spinoza, F-84916 Avignon, France
- MR Author ID: 630272
- Email: Erwann.Delay@univ-avignon.fr
- Received by editor(s): March 24, 2017
- Received by editor(s) in revised form: June 8, 2017, July 8, 2017, and July 16, 2017
- Published electronically: May 2, 2018
- Communicated by: Guofang Wei
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3499-3507
- MSC (2010): Primary 53C21, 53A45, 58J05, 35J62, 53C17, 53C50
- DOI: https://doi.org/10.1090/proc/13898
- MathSciNet review: 3803674